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Guidelines for Accurate and Transparent Health Estimates Reporting 
(GATHER) 
Please see Supplemental Information [SI] Table 1 for details on how this study meets the Guidelines for 
Accurate and Transparent Health Estimates Reporting (GATHER). 

 

2 Methods overview 
Supplementary Information [SI] Figure 1 presents a schematic representation of the modelling process. 
The estimation of past and current deaths blends data on reported COVID-19 deaths, COVID-19 
hospitalisations, and COVID-19 cases and testing rates; there are various biases (described in SI section 
2) associated with reported COVID-19 deaths that must be overcome before the next step of the 
modelling process. By using COVID-19 cases and testing rates (and hospitalisation data where available) 
as leading indicators of deaths, we can extend our estimates of deaths beyond that of the available 
death data (in particular, by up to eight days past the last death data point; details are given in SI Section 
2.5). From estimates of past and current daily deaths, we calculate past and current daily new SARS-
CoV-2 infections using age-specific mortality rates, age-specific infection fatality rates, and estimates of 
the average time from infection to death (details are given in SI Section 4.3). 

The primary model for estimating future infections and deaths is a mechanistic compartmental model. 
Specifically, the fraction of each location’s population that is susceptible (𝑆), infected but not infectious 
(exposed, 𝐸), infectious (𝐼ଵ, 𝐼ଶ), and recovered (𝑅), forming an SEIR model. Temporal variations in past 
transmission intensity is captured through the time-varying parameter 𝛽(𝑡) (details are given in SI 
Section 5). The association between the time-varying transmission intensity and a number of covariates 
is assessed in a multivariate mixed effects regression across all locations simultaneously (details are 
given in SI Section 5). Each of the covariates is then forecast into the future, with certain covariates 
forecast multiple times corresponding to unique future scenarios (details are given in SI Sections 5, 6). 
The forecast covariate values and the fitted regression model are then used to estimate future 
transmission intensity; the future transmission intensity is then used in the SEIR framework to estimate 
future infections. Finally, reversing the process that estimated past infections from past deaths, future 
deaths are estimated from future infections (details are given in SI Section 5.4). 

The final component of the modelling approach uses past, current, and future infections and deaths to 
estimate hospitalisations, including estimates of ICU usage and invasive ventilation need (details are 
given in SI Section 7). 

The estimation of past and current deaths model produces uncertainty. From this uncertainty, we 
generate 1,000 draws of past and current deaths for each location. The remaining steps of the process 
described above in brief and below in detail are done by draw, accumulating uncertainty in the 
subsequent steps (e.g., a separate regression connecting location-specific time-varying transmission 
intensity to covariates is conducted for each draw). 
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3 Death, case, and hospital quantities 
Our sources of COVID-19 data come from a wide range of both governmental, non-profit, and volunteer 
organisations. In all instances, we aim to best reflect what information is being reported by each 
location with respect to the various COVID-19 measures. Given the various data requirements for the 
model, we collated the following information: 

 Basic COVID-19 epidemiological data (cases and deaths by location and date) 

 COVID-19 hospital utilisation data (cumulative hospitalisations or admissions data) 

 Detailed COVID-19 epidemiological data (age and sex stratified data, time interval 
between symptom onset and clinical outcome, length of stay in hospital etc.) 

 Covariate data (discussed in SI Section 3), including testing rates or data describing 
behaviours relevant to COVID-19 transmission (e.g. mask use and general mobility) 

Such data collection processes naturally reflect the messy nature of daily data collection and processing 
– throughout the pandemic we have seen data systems fail and days of non-report that can lead to 
misleading artefacts in time series that hinder modelling. Where feasible to track (such as state-level 
cases and deaths) we track multiple sources of data which either allows us to replace erroneous data 
should one system fail or identify artefacts in common and seek out a specific resolution. 

All data sources are described in more detail below, as well as specific fixes and corrections required for 
each data type. 

3.1 Basic COVID-19 epidemiological data 
Sources for the epidemiological data used in our model are listed by state in SI Table 2. As a first pass, 
given their global data collection efforts, we used the Johns Hopkins University CSSE data collection 
system, which uses a variety of primarily web-scraping and text parsing approaches to periodically 
capture reported case and death numbers. Across the pandemic, we have seen many times when data 
reporting mechanisms have either broken down or have been paused (e.g. for weekends) and 
consequently induce artefacts in daily case and death time series. For the US states and territories, we 
supplement JHU routine collection in two ways (a) using The COVID-19 Tracking Project 
(www.covidtracking.com) archive of historical data that captures screenshots of state COVID-19 
dashboards several times throughout the day, allowing more flexibility in those locations where data 
updates were delayed and (b) manual extraction and verification of state dashboards and tracking of 
press-releases and footnotes of known issues and days off. 

For some states, due to repeated inconsistencies between state reports and JHU time series, we have 
completely replaced the automated time series with a human curated alternative, supported by a library 
of screen captures and downloaded epidemiological bulletins and summaries (SI Table 3). Where there 
are only intermittent discrepancies or regular known artefacts (e.g. Oregon not reporting on weekends 
starting late May/early June), we have a separate mechanism that replaces erroneous values (SI Table 
4). General sources for these data are listed by state in SI Table 2. 
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3.2 Detailed COVID-19 epidemiological data 
From a number of locations, far more than just total cases and deaths are reported, allowing us to 
inform a variety of key parameters with data collated from across the world. Not all locations report 
every piece of data however, so these data tend to be fragmented in space and time. 

We currently source data stratified by age from 40 locations. Where feasible, this dataset continues to 
be updated so it most accurately reflects the current state of affairs. Supplemental Information Section 
4 describes how these available data are subset and used in the relevant analysis for both mortality 
rates and infection-fatality rates. In addition, we track duration and length of stay data to inform 
hospital utilisation statistics. To inform this, we use a mix of reported summary statistics, as well as 
survival analysis of individual line list data. In short, we use the Global Line List 
(https://github.com/beoutbreakprepared/nCoV2019) together with publicly available, de-identified 
individual patient data from Ohio State, USA; Mexico; Ceara State and Rio de Janeiro State, Brazil, to 
estimate the distribution of days from onset of symptoms to death from COVID-19. 

3.3 Data preparation 
While global compilers of data on cases and deaths expedite collection of data across multiple countries 
and locations, for a variety of reasons these more-automated compilers can be incorrect. Similarly, even 
where these aggregators are faithfully documenting what is reported, local issues (such as laboratories 
not releasing information to state officials in a timely way) introduce a variety of artefacts into the data 
that have no epidemiological relevance, but reflect issues in the data generation and reporting process 
instead. Wherever possible, we adjust for these issues to better reflect the state-of-the-art knowledge 
of the epidemiological situation. Where an anomaly is identified, we cross-reference with state 
Department of Health dashboards, or other data aggregators (such as The COVID Tracking Project; 
www.covidtracking.com) to identify the source of the discrepancy. News reports and press releases are 
consulted when, rather than a data collection error, a reporting issue is noted, or the date when 
probable cases and deaths were first added to the official tally introducing a large spike in daily deaths 
and cases. 

For some locations, due to repeated inconsistencies between Johns Hopkins data and state-level 
reporting, we have manually undertaken our own extraction, or sourced an alternate repository of data 
(SI Table 3). 

Ad-hoc corrections made to the Johns Hopkins dataset are described in SI Table 4 Where artefacts are 
identified, the indicated cases and deaths are redistributed in the preceding time period proportionate 
to the daily patterning of cases and deaths. The following redistribution steps took place: 

 Alabama – 11th July, 3627 hospitalizations – Change in hospital data processing; 
 Alabama – 24th September, 195 cases – Backlog of test results from a laboratory; 
 Alabama – 25th September, 1594 cases – Backlog of test results from a laboratory; 
 Alaska – 25th August, 2 deaths – Two deaths added from prior time periods; 
 Arizona – 17th September, 577 cases – Inclusion of those determined positive via antigen testing; 
 Arizona – 18th September, 764 cases – Inclusion of those determined positive via antigen testing; 
 Arkansas – 16th September, 139 deaths – Addition of probable deaths; 
 Connecticut – 24th July, 440 cases – Testing backlog received from out-of-state lab; 
 Delaware – 23rd June, 67 deaths – Deaths from a prior period were reported on this day; 
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 Delaware – 24th July, 49 deaths – Reporting lags; 
 Florida – 1st September, 4620 cases – Backlog of test results from Quest Diagnostics 
 Hawaii – 18th September, 12 deaths – Addition of deaths from an elder care facility outbreak 
 Illinois – 4th September, 3558 cases – Backlog in timely reporting; 
 Iowa – 27th August, 1450 cases – Addition of cases tested positive from antigen tests; 
 Kentucky – 24th July, 360 hospitalizations – Anomalous reporting; assumed to be due to 

reporting lags; 
 Kentucky – 1st August, 463 hospitalizations – Anomalous reporting; assumed to be due to 

reporting lags; 
 Louisiana – 21st May, 682 cases – Louisiana reported a backlog of positive tests; 
 Louisiana – 9th September, 690 cases – Backlog of cases reported dating from 6th August to 4th 

September; 
 Maryland – 14th April, 64 cases – First day of reported probable cases; 
 Massachusetts – 1st June, 3,514 cases - Massachusetts added probable deaths and cases on 1st 

June; 
 Massachusetts – 1st June, 141 deaths - Massachusetts added probable deaths and cases on 1st 

June; 
 Massachusetts – 2nd June, 110 cases – Massachusetts continued to add probable cases; 
 Michigan – 5th June, 5014 cases – Michigan started reporting probable cases; 
 Michigan – 5th June, 239 deaths – Michigan started reporting probable cases; 
 Michigan – 9th September, 63 deaths – Batch of probable deaths reporting on this day; 
 Missouri – 5th September, 56 deaths – Deaths reported in this period actually occurred between 

June and August 
 Missouri – 23rd September, 64 deaths – Missouri provided updated timelines for deaths 

reported in prior time periods; 
 Missouri – 26th September, 20 deaths – Missouri provided updated timelines for deaths 

reported in prior time periods; 
 Montana – 24th September, 40 hospitalizations – Anomalous reporting; assumed to be due to 

reporting lags; 
 Nebraska – 12th August, 127 hospitalizations – Anomalous reporting; assumed to be due to 

reporting lags; 
 New Hampshire – 15th July, 74 hospitalizations – Anomalous reporting; assumed to be due to 

reporting lags; 
 New Jersey – 25th June, 1,854 deaths – Probable deaths included for the first time; 
 New Jersey – 8th July, 91 deaths – increase in probable deaths due to reporting lags; 
 Ohio – 15th September, 67 deaths – Backlog of deaths reported on this day; 
 South Carolina – 16th July, 52 deaths – Reporting lags; 
 South Carolina – 11th September, 1487 cases – USC delayed in uploading results spanning 22nd 

August to 8th September; 
 South Carolina – 13th September, 1364 cases – Continued anomalous reporting due to college 

reporting backlogs; 
 Virginia – 15th September, 88 deaths - Anomalous reporting; assumed to be due to reporting 

lags; 
 Virginia – 16th September, 36 deaths - Anomalous reporting; assumed to be due to reporting 

lags; 
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 Virginia – 17th September, 27 deaths - Anomalous reporting; assumed to be due to reporting 
lags; 

 Virginia – 18th September, 20 deaths - Anomalous reporting; assumed to be due to reporting 
lags; 

 Virginia – 19th September, 32 deaths - Anomalous reporting; assumed to be due to reporting 
lags; 

 Virginia – 20th September, 16 deaths - Anomalous reporting; assumed to be due to reporting 
lags; 

 Wyoming – 9th April, 73 cases – Day Wyoming first reported probable cases. 
For the following locations, we removed the total associated number of cases or deaths from the 
preceding time period proportionate to the daily patterning of cases and deaths: 

 Arkansas – 14th August, 1251 cases – Decrease due to removal of out of state resident cases 
 Delaware – 24th July, 151 cases – Case series revised; 
 Indiana – 20th August, 81 hospitalizations – Unexplained decrease; retained 7-day daily average 

and removed rest 
 Louisiana – 18th June 1,666 cases – 1,666 cases were identified as duplicates and total was 

revised; 
 Maine – 2nd June, 7 hospitalizations – Unexplained decrease, retained 7-day daily average and 

removed rest; 
 Massachusetts – 1st September, 106 hospitalizations – Unexplained decrease, retained 7-day 

daily average and removed rest; 
 Massachusetts – 2nd September, 7983 cases - Unexplained decrease; retained 7-day daily 

average and removed rest; 
 Nebraska – 18th August, 48 hospitalizations – Unexplained decrease; retained 7-day daily 

average and removed rest; 
 North Dakota – 25th May, 82 cases – 82 positive results were considered inconclusive and asked 

to be re-tested due to a lab experiencing a recent malfunction on two pieces of lab equipment. 
 Oregon– 3rd September, 22 hospitalizations – Unexplained decrease; retained 7-day daily 

average and removed rest; 
 Rhode Island – 24th September, 208 cases – Removal of duplicated cases from case count; 
 Wyoming – 5th September, 4 hospitalizations – Unexplained decrease; retained 7-day daily 

average and removed rest; 
 

3.4 COVID-19 hospital utilisation data 
Our model also estimates numbers of individuals in hospital and in intensive care. Hospitalisation data 
therefore gets used in two ways: (i) as a leading predictor of daily deaths (ii) as a statistic used to define 
the number of hospitalisations that result in deaths. 

Data for these metrics were collected from the respective state departments of health and associated 
dashboards. It is important to note that hospitalisation data is typically reported in one of three formats: 
(i) the cumulative total of all hospitalisations to date (ii) the daily admission of newly hospitalised 
patients (which if a series is inclusive of the first day of admissions, a cumulative total can be 
recapitulated) and (iii) as a census statistic that reports the number of individuals currently in-hospital. 
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Our current modelling framework takes advantage of data reported in formats (i) and (ii). Sources for 
these data are listed by state in SI Table 5. 

3.5 Modelling past deaths using random knot combination splines (RKCS) 
3.5.1 Data and model overview 
To derive infections from deaths and the infection fatality rate (SI Section 2.6) for use in the 
transmission model, we first perform a series of spline regressions using IHME’s customised meta-
regression tool MR-BRT. MR-BRT (“meta-regression—Bayesian, regularised, trimmed”) is a trimmed 
constrained mixed-effects model that provides an easy interface for formulating and solving common 
linear and nonlinear mixed effects models. It is open source, and its core computational kernel uses the 
mixed effects package LimeTr (https://github.com/zhengp0/limetr) and the spline package XSpline 
(https://github.com/zhengp0/xspline). For the statistical models and algorithmic features underlying 
MR-BRT, a published technical report is available37.  

We use MR-BRT functionality that allows the user to specify a number of potential knot combinations to 
be randomly generated and runs separate models for each combination, which are then evaluated for 
performance and combined using those scores to create a weighted composite of the sub-models. We 
use 40 combinations in each of the subsequently described model stages, which are run separately by 
location.  

The estimates obtained from MR-BRT smooth the trend in reported deaths and leverage patterns in 
reported case and hospital admissions data where available to make short term forecasts of deaths. 
Deaths and cases by day were available for every location; hospital admissions data were also available 
for 35 states. Before merging with deaths for modelling we account for the lag between hospital 
admissions or reporting of cases and death based on the Global Line List 
(https://github.com/beoutbreakprepared/nCoV2019) by shifting dates for these measures forward in 
time eight days. 
3.5.2 Deaths as a function of reported cases and hospitalisations 
In the first stage we model the cumulative death rate with either the cumulative case rate or the 
cumulative hospital admission rate as independent variable. Where data for both of these variables are 
available, a separate model is run for each. We use a cubic spline with one knot per 12 data points, but 
with the rightmost interval forced to be linear rather than cubic. We also fix the rightmost interior knot 
such that the right segment contains four data points, and we constrain the curve such that cumulative 
deaths monotonically increase along with cumulative cases/hospitalisations. Because of the shift 
window, we have eight days of case and hospitalisation data that extend past the last day of death data 
used to fit the model – by linearly extrapolating the tail of the fitted curve we produce projections of 
deaths that correspond to the additional eight days of case or hospitalisation data, in addition to our in-
sample fit. These death estimates capture the trend in cases or hospitalisations while effectively 
accounting for changing case- and hospitalisation-fatality ratios due to variation in exogenous factors 
such as age, pattern of cases, and testing rates. SI Figure 2 illustrates the fit for Florida, showing the time 
series of cumulative cases and hospitalisations, as well as the fit to deaths. 

3.5.3 Fitting final deaths curve with uncertainty using all epidemiological data inputs 
Using deaths estimated as a function of cases and hospitalisations from the model described above, in 
addition to observed deaths, we then fit a second stage model using cumulative deaths from all three 
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sources with time (in days) as the independent variable. We inflate the standard error of the first stage 
death estimates by a factor of two so that they are not as influential as the observed deaths. Once again, 
we use a cubic spline with a linear right tail, and a constraint to be monotonically increasing over time. 
We also fix the rightmost interior knot in such a manner that the linear rightmost segment contains four 
days of reported deaths – and thus 12 days of estimated deaths from cases and hospitalisations. 

With the resultant curve, we calculate the robust standard deviation of residuals in log daily death space 
which we use to independently sample death rates by day, resulting in uncorrelated time series draws 
representative of the observed noise in the data. We refit models to each of these log daily deaths time 
series, giving us smooth estimates of death with uncertainty for the full range of dates with observed 
deaths and extending out to an 8-day projection. We use the same knots samples as the cumulative 
model, once again with a linear right tail. In this model, we add Gaussian priors on the 3rd derivative of 
the cubic segments – a stronger prior of 𝒩(0, 10ିସ) on the left-tail segment, and a “dampening” prior 
of 𝒩(0, 0.01) on the remaining interior segments. The first of these permits non-linear growth early on 
in the outbreak while controlling for erratic behaviour in cubic splines at the terminus, and the second 
serves to reduce volatility that would suggest implausible fluctuations in transmission in the 
downstream model. Additionally, if fewer than 21 deaths have occurred in the past week we include a 
strong prior 𝒩(0, 10ି଼) on the slope of the rightmost segment, forcing it to be flatter. This mitigates 
the phenomenon of subtle changes of the linear death rate trend in settings with small numbers of 
deaths being projected as exponential growth in the non-linear transmission model. SI Figure 3 shows 
the cumulative point estimate and ln(daily) samples of death curves for Florida. 

3.5.4 Day-of-week ensemble 
In addition to stochasticity in the day-to-day reporting of these indicators, there is also bias that can be 
traced to the day of week on which the report falls – in general, Sunday and Monday tend to be 
underreported, with compensating overreporting Tuesday through Saturday. While this is generally 
true, the day of week pattern varies by state.  This means that a model run on data reported on a 
Monday can tend to over-emphasize or create the illusion of declining trends, while the opposite can be 
true of models run on Saturday-reported data. To address this we run seven models, each using data up 
to the most recent reporting for a given day of the week – so, for results based on data reported on 
Monday, 28 September, we run a model using data up through Tuesday, 22 September, and additional 
models for each day up through 28 September. The predictions of the linear right tail for each model 
extend to the most recent day predicted in the final model, 6 September. We use 142 samples from 
each of the past days models and 148 from the most recent day, resulting in 1000 draws for each 
location. 

 

3.6 Estimating infections from deaths 
Conditioning on the death draws produced in SI Section 2.5 and the Infection Fatality Rate (IFR) and age-
specific mortality rate (MR) calculated in SI Sections 4.2 and 4.1, daily infections are inferred by 
stratifying all-age deaths into age-specific deaths, using the age-specific IFR to determine the number of 
infections that would have led to this quantity of age-deaths, and then backshifting the infections in 
time to account for the lag between infection and deaths. 
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For each of the 𝑗 ∈ 1, …, 1000 cumulative death draws time-series, 𝐶𝐷௝, one infection-to-death lag, 𝑙௝ is 
randomly sampled from a discrete uniform distribution on 17 to 21 days. 

For each lowest-level location, 𝑙𝑜𝑐: 

1. Daily deaths time-series, 𝐷𝐷௝(𝑙𝑜𝑐), are generated by differencing the cumulative deaths time-
series, 𝐶𝐷௝(𝑙𝑜𝑐). 

2. The mortality probabilities, 𝑀𝑃௔௚௘஻௜௡೔
(𝑙𝑜𝑐), for an individual in this location belonging to each 

5-year age bins, 𝑎𝑔𝑒𝐵𝑖𝑛௜, is calculated: 

𝑀𝑃௔௚௘஻௜௡೔
(𝑙𝑜𝑐) =  

ெோೌ೒೐ಳ೔೙೔
(௟௢௖) × ௉௢௣ೌ೒೐ಳ ೔

(௟௢௖)

ஊ೔(ெோೌ೒೐ಳ ೔
(௟௢௖) × ௉௢௣ೌ೒೐ಳ೔ ೔

(௟௢௖)
 , 

where 𝑃𝑜𝑝௔௚௘஻௜ ೔
(𝑙𝑜𝑐), is the total population for that 𝑎𝑔𝑒𝐵𝑖𝑛௜ at 𝑙𝑜𝑐. If this is not available, we resort 

to using the parent location’s population. 

3. The expected age-specific daily deaths time-series, 𝐷𝐷௔௚௘஻௜ ೔

௝ (𝑙𝑜𝑐), is calculated by stratifying 
the all-age deaths using the age-specific mortality probabilities, 𝑀𝑃௔௚௘஻௜ ೔

(𝑙𝑜𝑐): 

𝐷𝐷௔௚௘஻௜௡೔

௝ (𝑙𝑜𝑐) =  𝑀𝑃௔௚௘஻௜ ೔
(𝑙𝑜𝑐) × 𝐷𝐷௝(𝑙𝑜𝑐). 

4. The expected age-specific daily infections time-series, 𝐷𝐼௔௚௘஻ ೔

௝ (𝑙𝑜𝑐), are calculated from the 
age-specific IFR and daily deaths: 

𝐷𝐼௔௚௘஻ ೔

௝ (𝑙𝑜𝑐) =  𝐷𝐷௔௚௘஻ ೔

௝ (𝑙𝑜𝑐)/𝐼𝐹𝑅௔௚௘஻ ೔
(𝑙𝑜𝑐) 

5. The date of the infection time-series is taken to be the date of the death time series shifted back 
by 𝑙௝ days. 

6. The all-age daily infection time-series is prepared for the SEIR model by summing the infections 
across all age groups: 

𝐷𝐼௝(𝑙𝑜𝑐) =  Σ௜𝐷𝐼௔௚௘஻௜ ೔

௝ (𝑙𝑜𝑐). 

This process yields 1000 draws of daily new infections across all modelled locations. 

𝑀𝑅௔௚௘஻ ೔
(𝑙𝑜𝑐)/Σ௜𝑀𝑅௔௚௘஻ ೔

(𝑙𝑜𝑐)𝐴஽𝐻: 𝐷஺ವ
 

 

4 COVID-19 covariates 
Covariates for the compartmental transmission SEIR model are predictors of the β parameter in the 
model that affect the transition from Susceptible to Infected states. Covariates were evaluated on the 
basis of biologic plausibility and on the impact on the results of the SEIR model. Given limited empirical 
evidence of population-level predictors of SARS-CoV-2 transmission, biologically plausible predictors of 
pneumonia such as population density (percentage of the population living in areas with more than 
1000 individuals per square kilometer), tobacco smoking prevalence, population-weighted elevation, 
lower respiratory infection mortality rate, and particulate matter air pollution were considered. These 
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covariates are representative at a population-level and are time invariant. Spatially resolved estimates 
for these covariates are derived from the Global Burden of Disease Study 2019 
(http://ghdx.healthdata.org/record/ihme-data/gbd-2015-covariates-1980-2015). Time varying 
covariates include seasonality of pneumonia excess mortality, diagnostic tests per capita, population-
level mobility, and personal mask use. These are described in the following sections and summarised in 
SI Table 6. 

 

4.1 Social distancing mandates 
A wide array of social distancing mandates have been implemented across the 50 states, some 
presenting as recommendations, others as requirements, some presenting fragmented updates that 
escalate over a few days or weeks, others as discrete events where a state transitions from no measures 
to full implementation of strict social distancing measures. To allow for comparability across different 
geographies, we collected and collated these mandates focusing on four components of social 
distancing, with six tiers of implementation. We only included those orders that were direct restrictions 
and had a legal basis for enforcement; executive orders that were only “recommendations” or that 
“urged” or “encouraged” citizens were therefore excluded. In all instances, we were interested in 
documenting the date of enactment, not the date of proclamation. 

4.1.1 Data processing 
Following New Zealand’s Alert Level system we identified four key sectors: stay-at-home measures 
intended to restrict the number of direct contacts any individuals may have, business and workplace 
closures intended to minimise transmission among employees and with customers, educational closures 
intended to protect students and staff, and internal travel restrictions intended to limit the amount of 
non-essential movement taken by individuals. For stay-at-home measures we considered two strata: the 
date at which any restrictions on the gathering of people took place, and the date at which a full stay-at-
home order was mandated, with interactions between households restricted. For business closures we 
considered two strata: the date at which the first restrictions applied to businesses were enacted, and 
the date on which all non-essential businesses were mandated to close. “Non-essential” is an inherently 
local distinction – rather than provide an exhaustive list of businesses that must have been closed to 
qualify, we followed local guidance. The necessary component, however, was clear exhaustive local 
guidance as to what businesses were essential, with an emphasis that all other businesses are non-
essential and therefore closed. 

In the last few months we have seen the de-escalation of these social distancing measures and have 
tracked the dates on which prior restrictions have been repealed. Additionally, some states are re-
imposing social distancing measures in recent weeks, which we also track and incorporate into the 
model. We identified legislation that was the antithesis of the closure orders that proceeded them. 
Consequently, should an executive order requiring people to stay at home be relaxed so that different 
households could interact, or that individuals could leave home for non-essential reasons, these orders 
would be associated with the date of relaxation. For an executive order to be repealed, it must be 
repealed across the entirety of the population affected – states that were following a phased process 
that varied county by county were only considered to have repealed the strictest mandates once all 
counties had the social distancing measures relaxed. 
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We used two key approaches for populating the US mandate database – (i) cross-referencing the 
resource compiled by the University of Washington Political Sciences Department tracking state-level 
executive orders43 and (ii) supplementation of these efforts by direct searches of state legislature 
websites, and governor websites. Supplemental Information Table 7 provides the date of enactment and 
repeal by state for each the six tracked measures, as well as linking to the source used to verify (see also 
SI Figure 4 and SI Figure 5). Global mandates were tracked via a combination of using the World Health 
Organization’s Public Health Social Mandates database, supplemented by specific local searches of 
government websites and news resources. 

4.1.2 Use in SEIR-fit 
After analyzing the time trends of mandate imposition around the world, we noticed that initial 
mandate imposition occurred within a two-to-three week period during March for most of the world, 
indicating that mandate imposition had more to do with global pressure to enact mandates and less to 
do with the outbreak size in a specific location. 

Rather than model each mandate individually, we looked at the mandate imposition trend in aggregate 
across five of the six IHME mandates: stay at home order, educational facilities closed, all non-essential 
businesses closed, partial business closure, and any gathering restriction. Specifically, we fit a 
quasibinomial model (mgcv R package) on the proportion of five mandates implemented at a given time 
as a function of location and date. The regression has a location specific intercept and a spline on day 
with six knots. 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑛𝑑𝑎𝑡𝑒𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ~ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑠(𝑑𝑎𝑦, 𝑘 = 6) 

4.1.3 Forecasting mandates 
The probability that five mandates will be “on” during any given day declines towards zero over time. To 
ensure that mandate forecasts align with observed data, we multiplicatively intercept shift the forecast 
to the start at the most recent observed data for mandate status. 

4.2 Mobility 
To better understand and predict disease transmission, we estimate human movement relative to 
baseline movement patterns prior to the COVID-19 pandemic. 

4.2.1 Data processing 
These data come from mobile phone users. We used four primary resources to gauge the changes in 
relative mobility of populations within each state: Google Community Mobility Reports 
(https://www.google.com/covid19/mobility/), Facebook Data for Good 
(https://dataforgood.fb.com/docs/covid19/), Safegraph 
(https://www.safegraph.com/dashboard/covid19-shelter-in-place), and Descartes Laboratories 
(https://www.descarteslabs.com/mobility/). Each of these sources have different definitions of mobility. 
For example, the data from Google reports distance traveled to six categories of locations relative to 
daily values from 03 January 3 to 06 February, 2020. SafeGraph reports the percent of devices that do 
not leave “home” relative to a baseline period of 08 February to 14 February, 2020. 

Google data are reported as a percentage difference in attendance to certain destinations compared to 
the median value from the 5-week period 03 January to 06 February, 2020. The reports are stratified by 
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six destinations: “Retail & recreation”, “Grocery and pharmacy”, “Parks”, “Transit stations”, 
“Workplaces”, and “Residential”. We took the average of the percentage change in the “Retail & 
recreation”, “Transit stations”, and “Workplaces” since these three destinations represent activities 
most strongly affected by the social distancing measures. No further processing is undertaken prior to 
modelling. 

Descartes Laboratories release mobility statistics at state and county levels. They provide a mobility 
index (of values normalised for the weeks of 17 February to 07 March, 2020) that represents the 
maximum Haversine (great circle) distance from the initial starting points reported by devices. The top 
10% of their data is removed due to possible inclusion of outlier data due to poor GPS recording. The 
index is reported from 01 March, 2020 through to three days prior to-date. The index is transformed by 
subtracting 100 from the m50_index value. 

Safegraph data release a number of measures that allow for a stay-at-home metric to be calculated. 
Data is reported from January 1st through to three days prior to-date, derived from GPS reports from 
anonymous mobile devices. These are used to determine a nighttime location for each device over a six 
week period. Devices are aggregated by home census block group. For modelling we determine an index 
representing the percent difference between the number of devices that flagged as having not stayed 
within their home range as compared to the mean number of devices that stayed within their home 
range over a baseline reference period (08 February and 14 February, 2020). To calculate the number of 
devices that stay within home range, for each census block group, we determine the ratio of devices 
that never leave home to the total number of devices. Using the associated FIPS codes, we can 
aggregate to the various analysis locations (whether counties, or states, or territories) by taking the 
device-weighted mean of the census block group ratios. 

Facebook Data for Good datasets are determined location-by-location or as geographic ranges. 
Facebook tracks the aggregate patterns of movement of Facebook users with location history turned on 
over a period of several hours. For this analysis, we receive patterns of movement reported by location-
specific administrative regions, which vary based upon the geographic range of the dataset (which could 
span neighborhoods of a city, different cities, or districts, counties, or states). For each, a baseline period 
for future comparison is developed by considering the prior 45 days of Facebook user activity. 
Subsequent to the date of initiation, all future days of reporting cross-reference their own baseline 
activity period. For each dataset, we used latitude and longitude for a given location to match it to one 
of our modelled geographies using a spatial overlay. Where latitudes and longitudes were missing or did 
not accurately represent a location, we manually assigned a model geography by name. Using the start 
location from out modelled geographies, we find the mean percent change in mobility for all trips 
starting from that location on a given day and at a given time (0800, 1200, or 1600). We weight this 
mean by the number of users who normally take this trip (n_baseline). Given the variable baseline 
periods, we must transform Facebook data so that it is comparable to other sources – given the much 
broader geographic coverage of Google Community Mobility reports, we calculate the mean percent 
change in Google data for 45 days preceding the first day of Facebook data and apply this to the 
Facebook percentage change. Where the Facebook data starting date occurred before or at the same 
time as the Google data, no transformation was necessary. Where Facebook data was present after the 
initiation of Google’s time series, we calculated a baseline for Facebook using the mean percent change 
in Google data over the 45 days prior. To adjust Facebook data, we calculated the absolute value change 
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for the estimated Facebook baseline, added the difference between Google and Facebook values, and 
divided by the Google baseline. This resulted in a new mean percent change that was consistent with 
the baseline from Google and the other mobility datasets, rather than the Facebook dataset specific 
timings, some of which cross-reference a baseline period well into the lockdown period. 

There are several steps to smooth and standardise the data. We observe strong patterns in mobility by 
the day of the week. The data from Google is already corrected for these day-of-week patterns. For all 
other sources we calculate a 7-day rolling mean to account for weekly trends. 

4.2.2 Use in SEIR-fit 
To account for differences in time coverage between sources we calculate the median ratio between 
each available pair of sources for each location across the time series. In locations where we are missing 
the time series for a given source, we impute based on all other sources and the median ratio in that 
location over time. 

In the US, we calculate the indicator based on all four sources, and in the rest of the world, we calculate 
the indicator based on Google and Facebook data. Because the sources tend to provide systematically 
different estimates, and when a given location is missing data from a component source, we impute 
values for the missing source based on the available source(s) and the global median ratio(s) with the 
missing source. 

After all missing dates and sources have been imputed, we average across sources and take a 5-day 
rolling mean using Gaussian process regression to smooth over time. For locations where we are missing 
data early in the time series, we use Holt smoothing back in time, linear damped with phi = 0.9 to create 
a full time series from 01 January, 2020 through the most recent available date of data. In sub-national 
and national locations where we are missing data, we impute the national and regional averages 
respectively. 

Once we have generated a full location/time series dataset of mobility, we fit a linear regression using 
an open source mixed effects solver SLIME (https://github.com/zhengp0/SLIME/) to determine the 
effects of social distancing mandates in each location. SLIME provides functionality to incorporate 
bounds and a Gaussian prior to the total effects (𝛽௜ + 𝜇௜௟), which is important for guiding the regression 
finding the correct coefficients. We calculate mobility as: 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦௟௧ = (𝛽ଵ + 𝜇ଵ௟)𝑆𝐷1௟௧ + (𝛽ଶ + 𝜇ଶ௟)𝑆𝐷2௟௧ + (𝛽ଷ + 𝜇ଷ௟)𝑆𝐷3௟௧ + (𝛽ସ + 𝜇ସ௟)𝑃𝑆𝐷1௟௧

+ (𝛽ହ + 𝜇ହ௟)𝑃𝑆𝐷3௟௧ + (𝛽଺ + 𝜇଺௟)𝐴𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒௟௧ + 𝑒௟௧ 

Where 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦௟௧ is the percent change from baseline for a given location (l) and time (t), 𝑆𝐷1௟௧, 𝑆𝐷2௟௧, 
𝑆𝐷3௟௧, 𝑃𝑆𝐷1௟௧, and 𝑃𝑆𝐷3௟௧ are indicator variables for five social distancing mandates—stay at home 
order, school closures, essential business closures, restricted gathering order, and partial business 
closures—set to be 1 when a policy is implemented in a given location (l) and time (t) and 0 otherwise. 
𝐴𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒௟௧  is an indicator variable that is set to 1 beginning 7 days before the first mandate is 
implemented to account for reduced mobility prior to policy intervention. (𝛽௜ + 𝜇௜௟) estimates the 
location-specific (l) effect of each mandate (i) and 𝑒௟௧ is the residual error. We set a prior on the variance 
of all random effects of 0.001 and set a bound such that (𝛽௜ + 𝜇௜௟) must be negative for all locations (l) 
and mandates (i). 



  

 

18 
 

4.2.3 Forecasting mobility 
For each location we forecast mobility based on the location-specific estimated effects (𝛽௜ + 𝜇௜௟) and 
any mandates that have been lifted or announced. Beyond the period for which we have documented 
policies, we use the mandate forecast model described in section 3.1.3, which estimates the location-
specific proportion of mandates implemented. We assign an equal probability of being lifted to each of 
the mandates that are still implemented such that the total proportion of mandates implemented is 
equivalent to the predicted proportion. In the United States the model restricts the date of school 
reopening to no earlier than August 15, 2020. We do not allow mobility projections to go above zero, 
the baseline mobility prior to the Covid-19 pandemic. 
 

4.3 Testing per capita 
Testing for COVID-19 can impact the epidemic both directly and indirectly. Directly, a positive test result 
alerts an individual to their need to self-isolate and for their contacts to quarantine. Indirectly, higher 
levels of testing ensure that policy makers and healthcare professionals have accurate information when 
making decisions about social distancing mandates and resource allocation. 
 

4.3.1 Data processing 
Data on the number of tests administered were sourced from a combination of direct reports from 
government health authorities; The COVID Tracking Project for the United States, except for Washington 
State; and Our World in Data for all locations that were present in their database that we had not 
sourced from direct reports, supplemented by additional country resources when missing. Sources for 
these data are detailed in SI Table 8. 

4.3.2 Use in SEIR-fit 
When both daily and cumulative data were present on the same date for a given location, we gave 
preference to the cumulative data. When there were daily data reported in between gaps in cumulative 
data reports, we added the daily data to the preceding cumulative value to fill in the missing cumulative 
data. Dates where only positive tests were reported were dropped. Cumulative data preceded by days 
of no reports was shifted to the midpoint of the missing interval and scaled to equal the average daily 
tests over the interval. In locations where the date of the first confirmed case preceded the date of the 
first reported tests, we utilised the same approach of shifting to the midpoint of the interval and setting 
the level to the average daily tests over the interval. We then aggregated to weekly intervals and linearly 
interpolated the weekly data with knots placed at the middle of each week. Finally, we smoothed the 
weekly interpolated data using ten iterations of smoothing with a uniform kernel and a three-day 
bandwidth. 
 

4.3.3 Forecasting testing 
We projected levels of daily testing per capita using the location-specific mean daily difference in testing 
per capita for locations with data; in effect assuming that future growth in daily testing per capita will 
match past increases in testing. For locations that were missing testing data, we predicted the daily 
increase in testing per capita using the Socio-demographic Index, a composite used widely in the GBD 
study and reflecting income, education, and fertility. We did not allow testing per capita to increase in 
perpetuity, instead we capped the maximum daily tests at 500 per 100,000 people.  
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4.4 Mask effectiveness and use 
We performed a meta-analysis of 40 peer reviewed scientific studies to assess mask effectiveness for 
preventing respiratory viral infections. We updated systematic reviews and meta-regressions of the 
individual benefits of mask use. We used MR-BRT (see SI section 2.5 for additional information on MR-
BRT) to perform a novel meta-analysis. We also analyzed survey data on the levels and trends of mask 
use. This analysis sought to estimate the proportion of people who self-reported always wearing a 
facemask when outside their homes. 

4.4.1 Data processing 
To identify variation in mask use across both US and global locations during the timeframe of the 
current COVID-19 pandemic, we combined survey data from multiple sources. Our covariate for mask 
use is the proportion of adults that self-report always wearing a mask when outside their homes. For US 
estimates (all 50 states and Washington, D.C.), we analyzed volunteer survey data from PREMISE 
(https://www.premise.com/covid-19/) a crowd-sourcing data collection and analytics platform. The 
PREMISE survey asked respondents a variety of questions about behaviours, sentiments, and attitudes 
vis-a-vis COVID-19. We make use of the following: “When you leave your home do you typically wear a 
face mask (SELECT_ONE)” with responses “Yes, always; Yes, sometimes; No never”. Respondents were 
also asked about their reasons for not wearing a mask. The latitude and longitude for each respondent 
was also provided. The date range of data incorporated in this analysis was 23 April 2020 to 21 
September 2020. 

We evaluated the maximum level of mask usage observed globally during the COVID-19 pandemic and 
used this value as an upper bound for what could be achieved in the United States (see SI Section 6.1 on 
scenario development). To evaluate mask usage in countries other than the US, we used volunteer 
survey data collected through the Facebook app, the social networking platform with more than 2 billion 
global users, as part of its COVID-19 symptom survey and Data for Good program 
(https://dataforgood.fb.com/docs/covid19/). COVID-19 symptom survey data are collected via the 
Facebook app by the University of Maryland (non-US) and Carnegie Mellon University (US). For the non-
US estimates, we analyzed aggregated data hosted by the University of Maryland’s Joint Program in 
Survey Methodology. While the principal focus of the survey is on self-reporting of COVID-19-related 
symptoms experienced by the sampled user and members of their household, we make use of 
responses to the following question: “In the last 7 days, how often did you wear a mask when in public?” 
to which there are the following responses “All of the time; Most of the time; About half of the time; 
Sometimes; Never; I have not been in public during the last 7 days”. For this survey, daily responses are 
received and processed so that all respondents from the same geography are combined into one day-
specific response, and then the proportion of responses for each option are determined from this 
composite. Facebook data have two- to three-day lags and are updated twice per week. The date of the 
first set of data from Facebook that we analyzed is April 23, 2020 and these continue to be updated 
twice per week through 28th September 2020 (https://dataforgood.fb.com/docs/covid19/). Lastly, we 
used the YouGov COVID-19 Behavioural Tracker survey (https://today.yougov.com/covid-19). 
YouGov surveys cover 29 countries and have interviewed around 21,000 individuals each week since 1 
March and up until 28th September 2020. From YouGov, we use the following question: “Thinking about 
the last 7 days, have you worn a face mask outside your home (e.g. when on public transport, going to a 
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supermarket, going to a main road)” with responses “Always”, “Frequently”, ”Sometimes”, ”Rarely”, and 
“Not at all”. Respondents for “Always” were the numerator in our proportion.  

4.4.2 Use in SEIR-fit 
We used a smoothing model to produce estimates of observed mask use. This smoothing process 
averages each data point with its neighbors. Projections of mask use past the observed survey data were 
flat at the value of the last observed, smoothed model.  

4.4.3 Forecasting mask use 
Mask use by location is projected forward at a constant level from the last date of observed mask use 
data (21 September, 2020) through 28 February, 2021. 

4.4.4 Estimation of mask use effect size 
We conducted a meta-analysis to determine the efficacy of masks in reducing transmission of 
respiratory viruses by extracting data studies from two published meta-analyses and one additional 
article – these analyses are reported in greater detail in a forthcoming preprint25. The resulting meta-
regression calculated log-transformed relative risks and corresponding log-transformed standard errors 
based on raw counts and used a continuity correction for studies with zero counts in the raw data 
(0.001). Whereas the other meta-analyses reported one outcome per study, we extracted all relevant 
outcomes per study. Additionally, we included additional specifications and characteristics to account 
for differences in characteristics of individual studies and to identify important factors impacting mask 
effectiveness. These include the type of population using masks (general population versus healthcare 
population), country of study (Asian countries versus non-Asian countries), type of mask (paper/cloth or 
non-descript versus medical masks and N95 masks), type of control group (no use versus infrequent 
use), type of disease (SARS-CoV 1 or 2 versus H1N1/influenza/other respiratory pathogens), and type of 
diagnosis (clinical versus laboratory). The geographic locations of the studies included: China, Singapore, 
Hong Kong, Thailand, Vietnam, Saudi Arabia, South Korea, Canada, Germany, and a multinational airline 
flight. The region with the largest proportion of studies was Southeast Asia, where 24 of 40 studies were 
conducted. More than half the observations (36 or 65 observations, or 55%) were of SARS-CoV 1 or 2, six 
of which examined SARS-CoV 2. One observation studied cloth masks, 19 studied non-descript masks, 
and 44 looked at surgical, medical, or N95 masks; 52 observations were diagnosed via laboratory 
methods. We pooled “other” masks and cloth masks so that they could represent the range of the most 
common masks that members of the general public might wear in a non-medical setting. Moreover, 18 
observations were in the general population, while 47 examined healthcare workers or healthcare 
settings. We were particularly interested in studies of the general population (i.e. non-healthcare 
setting), including households, student populations, and airplanes. With regards to control groups, 49 
observations considered “no use” as the control, while 14 considered infrequent use and one looked at 
pre-/-post/study design. The re-extraction and inclusion of articles not included in the other meta-
analyses resulted in 65 rows of data from 41 papers. We retained one additional study from the 
unavailable papers for sensitivity analyses; one paper was excluded due to our inability to recreate 2x2 
table and the reported odds ratio; two papers were excluded due to incorrect control groups. We 
calculated relative risks and corresponding log-transformed standard errors based on raw counts where 
available. 
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We used MR-BRT (SI Section 2.5) to perform a meta-analysis that considered the various characteristics 
of each study. Our MR-BRT analysis used random effects with gamma terms accounting for between-
study heterogeneity and quantified remaining between-study heterogeneity into the width of the 
uncertainty interval. We considered several analyses, but in the end settled on univariate models, an 
intercept-only model, and several multivariate models. Our analysis considered intercept-only model, all 
univariate associates, and multivariate models, as well as sub-analyses for key variables like population 
and mask types. We also performed various sensitivity analyses to verify the robustness of the modelled 
estimates and found that the estimate of the effectiveness of mask use did not change significantly 
when we explored four alternative analyses, including changing the continuity correction assumption, 
using odds ratio versus relative risk from published studies, using a fixed effects versus a mixed effects 
model, and including studies without covariate information. 

Our analysis suggested a reduction in infection (from all respiratory viruses), for all mask-wearers, by at 
least one-third (Relative Risk = 0.65 (0.47-0.92)) relative to controls. The intercept only model has a 
point estimate of 0.48 (0.42-0.56) for all users, medical or otherwise. For all non-medical mask users, we 
estimate the reduction in infection is 0.57 (0.45-0.74) via univariate regression, and 0.65 (0.47-0.92) via 
bivariate regression. 

4.5 Pneumonia seasonality 
Pneumonia is one of the main clinical syndromes associated with respiratory SARS-CoV-2 infection and 
its seasonality is marked in many locations, particularly those far from the equator. This could be due to 
climatic variation (relative humidity, average air temperature) or due to human behaviour (greater time 
spent indoors). We modelled the ratio of pneumonia deaths in a given week to the average weekly 
pneumonia deaths by location. As such, ratios above 1 indicate that more pneumonia deaths than the 
yearly average occur in that week, and ratios below 1 indicate that fewer deaths than the yearly average 
occur. For a map showing these estimated ratios for each US state on the final week of the year, see 
Appendix 5 Figure 3. 

For locations where we have weekly vital registration data for pneumonia deaths, we used the data to 
directly model this ratio. For the United States, we used weekly pneumonia mortality data from the 
National Center for Health Statistics Mortality Surveillance System from 2013 to 2019 by each state. 
Pneumonia deaths include all deaths classified by the full range of ICD codes in J12 - J18.9. To account 
for uncertainty in vital registration data and model type, all ratios were estimated 1000 times in the 
meta-regression model. The proportion of deaths in each week was calculated as the weekly number of 
deaths over the annual number of deaths in a location. The standard error was calculated using the 
formula for binomial variance: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
ඨ

𝑤𝑒𝑒𝑘𝑙𝑦 𝑑𝑒𝑎𝑡ℎ 𝑐𝑜𝑢𝑛𝑡
𝑎𝑛𝑛𝑢𝑎𝑙 𝑑𝑒𝑎𝑡ℎ 𝑐𝑜𝑢𝑛𝑡 

∗ (1 −
𝑤𝑒𝑒𝑘𝑙𝑦 𝑑𝑒𝑎𝑡ℎ 𝑐𝑜𝑢𝑛𝑡
𝑎𝑛𝑛𝑢𝑎𝑙 𝑑𝑒𝑎𝑡ℎ 𝑐𝑜𝑢𝑛𝑡 

) 

𝑎𝑛𝑛𝑢𝑎𝑙 𝑑𝑒𝑎𝑡ℎ 𝑐𝑜𝑢𝑛𝑡
  

For locations without data on pneumonia deaths, the strategy included additional models and 
calculations to generate estimates for all locations. We modelled the global seasonality trend pooling all 
pneumonia deaths data, calculated the amplitude of the seasonality time series in specific locations to 
model and predict the relationship between amplitude and latitude, and then used the estimated 
amplitude values by latitude to manipulate the amplitude of the global pattern. As such all locations 
without data have the same general seasonality pattern (higher in October to April in Northern 
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Hemisphere; higher in April to October in Southern Hemisphere), but the amplitude varies by location, 
depending on the latitude. 

To preserve the cyclical trend of the pneumonia deaths in the model, the same 52 weeks of data were 
triplicated, and added to the beginning and the end of the time series. We then modelled the logit ratio 
of weekly deaths to annual deaths (shown in SI Figure 6) in a meta-regression tool developed at the 
Institute for Health Metrics and Evaluation called MR-BRT (Meta-Regression, Bayesian, Regularised, 
Trimmed) (see section 2.5 for additional detail). The meta-regression used a cubic spline on week and 
1% trimming of the data inputs. 
 

4.6 Time-invariant covariates 
4.6.1 Lower Respiratory Infection Mortality 
In the transmission model, the mortality rate due to lower respiratory infections (LRI) is captured as the 
location-specific age-standardised mortality death rate in the population 15 years or older. The 15+ 
years age-standardised LRI death rate is assumed to represent transmission of respiratory 
communicable diseases among adults. 

Estimates of the LRI mortality rate come from the Global Burden of disease study, and methods for 
estimation are described elsewhere38,39,44. Briefly, we used vital registration and verbal autopsy data in a 
Bayesian ensemble model which uses out of sample validity to produce a variety of plausible models 
which are weighted based on their performance in the final ensemble. Estimates are produced for each 
age, sex, year, and location. For this analysis, we used the age-standardised rate for both sexes by 
location in the year 2019 (most recent complete year of estimates). For a map showing the distribution 
of lower respiratory infection mortality across states, see Appendix 5 Figure 2. 

4.6.2 Altitude 
The incidence and severity of lower respiratory infections, including pneumonia, is greater at higher 
elevation45–47. Altitude and humidity are believed to be a predictor of transmission and several studies 
have found greater mortality due to pneumonia at higher elevations, possibly due to decreased oxygen 
concentration at higher altitudes. The proportion of the population living below 100 meters above sea-
level by country was obtained from the Global Burden of Disease study 
(http://ghdx.healthdata.org/record/ihme-data/gbd-2015-covariates-1980-2015). 

4.6.3 Smoking 
The adult (15+ years) age-standardised tobacco smoking prevalence in 2019 was used as a covariate. 
This covariate is from the Global Burden of Disease study 201948 and described in detail there. Briefly, 
we estimated the prevalence of current smokers (daily or occasional) using individual-level and 
aggregated available survey data. The prevalence was modelled using Space-time Gaussian Process 
Regression to produce smoothed estimates by space, time, age, and sex. For this analysis, we used age-
standardised prevalence among both sexes. Smoking prevalence is location-specific. For a map showing 
the distribution of smoking prevalence across US states, see Appendix 5 Figure 4. 

4.6.4 Ambient particulate matter pollution 
Ambient particulate matter pollution is a covariate from the Global Burden of Disease study 201948 and 
is defined as the population-weighted mean exposure to air particles with an aerodynamic diameter less 
than 2.5 micrometers per cubic meter of air. Input data for this model come from satellite observations, 
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ground measurements, land use data, and chemical transport model simulations. Estimates are 
produced on a geospatial resolution and aggregated to the national level by population-weighting. This 
covariate is location-specific. For a map showing the distribution of particulate air pollution by US state, 
see Appendix 5 Figure 1. 

4.6.5 Population density 
Population density per pixel was calculated using Worldpop total population rasters and an area raster 
and is represented as the percentage of the population living in areas denser than 1,000 people per 
square kilometer (km2). By country, we determined the proportion of the population living in discrete 
categories of density and aggregated categories less than 1000 per km2 for this analysis, using 2020 
estimates to approximate population. 

4.6.6 Demography 
Demographic data on state populations, namely the age structure of the population, is used in 
estimating the age-specific mortality rate calculated in SI section 4.1 to stratify all-age deaths into age-
specific deaths. Age distributions were obtained from the Global Burden of Disease study40,48,49. 

4.6.7 Altitude 
Altitude is captured as the proportion of the population living below a given threshold of sea level. For 
the sake of this analysis, we incorporated altitude as the proportion of the population living below 100 
meters above sea-level by state; this value was derived from the Global Burden of Disease study 
(http://ghdx.healthdata.org/record/ihme-data/gbd-2015-covariates-1980-2015). 

5 Intermediate quantity modelling 
5.1 Mortality rate by age estimation 

To determine the age pattern of mortality for each location, we assembled available data from multiple 
global locations (SI Table 10) and fit a hierarchical meta-regression model37. The dependent variable was 
logit-transformed deaths divided by population. We employed a cascading spline structure to capture 
the non-linear effect of age, borrowing information from levels higher in the cascade to inform the 
shape of the age effect in relatively data sparse regions. The first stage of the cascade was a model fit on 
all data, with random intercepts by location. The estimated spline coefficients from this global model 
were passed as Bayesian priors to the subsequent region-specific models, and the region-specific 
coefficients were passed as priors to location-specific models. For a given in-sample or out-of-sample 
location, the model from most detailed geographical level was used to make predictions. Finally, we 
divided predictions by the minimum location-specific value to obtain age-specific relative mortality 
ratios.  
 

5.2 Infection fatality ratio 
We estimated infection fatality ratios (IFR) using random effects meta-analysis, modeling the dependent 
variable as logit-transformed deaths divided by infections. To calculate the dependent variable, age-
specific observations from seroprevalence studies (see SI Table 9) were multiplied by population to 
obtain an estimate of infections. For each population represented by a seroprevalence observation, a 
corresponding estimate of deaths was obtained by splitting all-age deaths into age group-specific deaths 
based on the population’s age distribution and predicted age pattern of mortality. The model included 
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random intercepts by study and a spline to estimate the non-linear effect of age. The spline method 
allows for the estimation of a continuous age effect from observations recorded as age groups.  
 
 

5.3 Infection to death duration 

To estimate the time from infection to death, we brought together two distinct sources of information: 
published studies of time from infection to symptoms and individual patient data on time from symptom 
onset to death. Due to a paucity of data on the time from infection to symptom onset, we used the 
median time reported from a single source (5.1 days) for the first part of this duration and added it to a 
distribution for the second derived by pooling data from the Global Line List 
(https://github.com/beoutbreakprepared/nCoV2019); Ohio, USA 
(https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards); Rio de Janeiro State, Brazil 
(http://painel.saude.rj.gov.br/monitoramento/covid19.html); Ceara State, Brazil 
(https://indicadores.integrasus.saude.ce.gov.br/indicadores/indicadores-coronavirus/coronavirus-
ceara); and Mexico. This pooled dataset included data on 5,125 individuals, with a median time from 
onset of symptoms to death of 11 days. Informed by this, we use a uniform distribution over 17 to 21 
days of lag between infection and death. 

 

5.4 Hospitalisations to death ratio 

To determine hospitalisation, we use cumulative hospital to cumulative deaths ratios estimated directly 
from hospitalisation and mortality data in the US and Europe through July 2020. We assembled data on 
COVID-19 hospitalisations from a number of countries and US states as detailed in SI Table 5. We 
analyzed hospitalisation to death ratios using random effects meta-analysis. We used the location-
specific random effect in the estimate for locations with data. In the absence of data we used the 
corresponding pooled effect for other countries.  

As the hospitalisation to death ratios are for all-ages only, to estimate the age-pattern of the 
hospitalisation to death ratio, we used the age distribution of hospitalisation to death (𝐻: 𝐷) in the US to 
estimate the age-distribution for other countries and states: 

𝐻: 𝐷௔௚௘஻௜௡(loc) =  
𝐻: 𝐷௔௚௘஻௜௡(𝑈𝑆) ∗ 𝐻: 𝐷௔௟௟஺௚௘(𝑙𝑜𝑐) 

(𝐻: 𝐷௔௚௘஻௜௡(𝑈𝑆) ∗ 𝐷௔௚௘஻௜௡(𝑙𝑜𝑐))/𝐷௔௟௟஺௚௘(𝑙𝑜𝑐)
 

 

6 Fitting and predicting transmission dynamics 
6.1 SEIR-fit 
6.1.1 Model formulation 
To project the full time-series of deaths and infections to the future, we use a transmission model with 
the following compartments: susceptible, exposed, infected, and removed (SEIR). In particular, each 
location’s population is tracked through the following system of differential equations: 
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𝑑𝑆

𝑑𝑡
= −𝛽(𝑡)

𝑆(𝐼ଵ + 𝐼ଶ)ఈ

𝑁
 

𝑑𝐸

𝑑𝑡
= 𝛽(𝑡)

𝑆(𝐼ଵ + 𝐼ଶ)ఈ

𝑁
− 𝜎𝐸 

𝑑𝐼ଵ

𝑑𝑡
= 𝜎𝐸 − 𝛾ଵ𝐼ଵ 

𝑑𝐼ଶ

𝑑𝑡
= 𝛾ଵ𝐼ଵ − 𝛾ଶ𝐼ଶ 

𝑑𝑅

𝑑𝑡
= 𝛾ଶ𝐼ଶ 

where 𝛼 represents a mixing coefficient to account for imperfect mixing within each location, 𝜎 is the 
rate at which infected individuals become infectious, 𝛾ଵ is the rate at which infectious people transition 
out of the pre-symptomatic phase, and 𝛾ଶ is the rate at which individuals recover. This model does not 
distinguish between symptomatic and asymptomatic infections but has two infectious compartments (𝐼ଵ 
and 𝐼ଶ) to allow for interventions that would avoid focus on those who could not be symptomatic. 𝐼ଵ is 
thus the pre-symptomatic compartment. 

6.1.2 Basic reproductive number under control and the effective reproductive number  
In this section, we derive the time-varying basic reproductive number under control, 𝑅௖(𝑡), and the 
time-varying effective reproductive number, 𝑅௘௙௙(𝑡). For a compartmental model with static 
coefficients, we can calculate the basic reproductive number as the largest singular value of the next 
generation operator 

𝑅௖ = 𝜆௠௔௫(𝐹𝑉ିଵ) 

where 𝐹 is the Jacobian of the vector of appearance rates for compartments that actively possess the 
virus (𝐸, 𝐼ଵ, and 𝐼ଶ in our case), and 𝑉 = 𝑉ି + 𝑉ା is the Jacobian of the vector of transport rates of the 
individuals between these compartments. Both Jacobians are evaluated at the state of disease-free 
equilibrium (i.e., when 𝑆 = 𝑁). The appearance and transport rate vectors for our SEIR model 
formulation are: 

𝑓 = ൮
𝛽

𝑆(𝐼ଵ + 𝐼ଶ)ఈ

𝑁
0
0

൲ ,           𝑣 = ൭
𝜎𝐸

𝛾ଵ𝐼ଵ − 𝜎𝐸
𝛾ଶ𝐼ଶ − 𝛾ଵ𝐼ଶ

൱. 

We can then directly calculate the Jacobians at disease-free equilibrium: 

 

𝐹 = ൭
0 𝛼𝛽(𝐼ଵ + 𝐼ଶ)ఈିଵ 𝛼𝛽(𝐼ଵ + 𝐼ଶ)ఈିଵ

0 0 0
0 0 0

൱ 
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𝑉 = ൭
𝜎 0 0

−𝜎 𝛾ଵ 0
0 −𝛾ଵ 𝛾ଶ

൱ ⇒ 𝑉ିଵ =

⎝

⎜
⎜
⎜
⎛

1

𝜎
0 0

1

𝛾ଵ

1

𝛾ଵ
0

1

𝛾ଶ

1

𝛾ଶ

1

𝛾ଶ⎠

⎟
⎟
⎟
⎞

 

Thus, the next generation operator is 

𝐹𝑉ିଵ = ቌ
𝛼𝛽(𝐼ଵ + 𝐼ଶ)ఈିଵ ቀ

ଵ

ఊభ
+

ଵ

ఊమ
ቁ 𝛼𝛽(𝐼ଵ + 𝐼ଶ)ఈିଵ ቀ

ଵ

ఊభ
+

ଵ

ఊమ
ቁ 𝛼𝛽(𝐼ଵ + 𝐼ଶ)ఈିଵ ⋅

ଵ

ఊమ
 

0 0 0
0 0 0

ቍ 

which yields 

𝑅௖ =  𝛼𝛽(𝐼ଵ + 𝐼ଶ)ఈିଵ ൬
1

𝛾ଵ
+

1

𝛾ଶ
൰ 

 

6.1.3 Fitting 𝛽(𝑡) 
 

We denote the new daily infections output from the previous step as: 

𝑓(𝑡) ≈ 𝛽(𝑡)𝑆(𝐼ଵ + 𝐼ଶ)ఈ 

For each draw we take as constant the parameters governing the transmission dynamics other than 
𝛽(𝑡) (i.e., 𝛼, 𝜎, 𝛾ଵ, and 𝛾ଶ). These parameter values are drawn from distributions based on existing 
literature and can be found in SI Table 11. 

With a known 𝑓(𝑡), we can solve a single simple linear ODE to get 𝐸(𝑡): 
𝑑𝐸

𝑑𝑡
= −𝑓(𝑡) − 𝜎𝐸 

This ODE can be solved in closed form using integrating factors, or numerically. In practice we use the 4th 
order Runge-Kutta method (RK-4). However, it is useful to solve it in ‘closed form’ using the integration 
factor approach. Defining 

𝑣(𝑡) = න 𝜎𝑑𝑡 = 𝜎𝑡, 

we have the closed form solution 

𝐸(𝑡) = exp(−𝜎𝑡) න −𝑓(𝜏) exp(𝜎𝜏)
௧

଴

𝑑𝜏 + 𝐶 exp(−𝜎𝑡) ,    𝐶 = 𝐸(0) 

Having obtained 𝐸(𝑡), we repeat the process, solving for 𝐼ଵ(𝑡) and 𝐼ଶ(𝑡): 

𝑑𝐼ଵ

𝑑𝑡
+ 𝛾ଵ𝐼ଵ = 𝜎𝐸(𝑡) 
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𝐼ଵ(𝑡) = exp(−𝛾ଵ𝑡) ቆන −𝑓(𝜏) exp(𝜎𝜏)
௧

଴

𝑑𝜏ቇ + 𝐼ଵ
଴ exp(−𝛾ଵ𝑡) 

= 𝐹ଵ(𝑡) + 𝐼ଵ
଴ exp(−𝛾ଵ𝑡) 

𝑑𝐼ଶ

𝑑𝑡
+ 𝛾ଶ𝐼ଶ = 𝛾ଵ𝐼ଵ(𝑡) 

𝐼ଶ(𝑡) = exp(−𝛾ଶ𝑡) ቆන 𝛾ଵ𝐼ଵ(𝜏) exp(𝛾ଶ𝜏)
௧

଴

𝑑𝜏ቇ 

= exp(−𝛾ଶ𝑡) ቆන 𝛾ଵ(𝐹ଵ(𝜏) + 𝐼ଵ
଴ exp(−𝛾ଵ𝜏)) exp(𝛾ଶ𝜏)

௧

଴

𝑑𝜏ቇ 

= exp(−𝛾ଶ𝑡) ቆන 𝛾ଵ 𝐹ଵ(𝜏)
௧

଴

exp(𝛾ଶ𝜏) 𝑑𝜏ቇ +
𝐼ଵ

଴

𝛾ଶ − 𝛾ଵ

(exp(−𝛾ଵ𝑡) − exp(−𝛾ଶ𝑡)) 

= 𝐹ଶ(𝑡) +
𝐼ଵ

଴

𝛾ଶ − 𝛾ଵ

(exp(−𝛾ଵ𝑡) − exp(−𝛾ଶ𝑡)) 

where 𝐸(𝑡) is known when solving 𝐼ଵ, and then 𝐼ଵ(𝑡) is known when solving for 𝐼ଶ. While useful for 
formulation to think of the exact solutions, the integrals must still be solved numerically. We therefore 
solve all the differential equations using Runge-Kutta order 4. With 𝑓(𝑡) in hand, we also obtain 𝑆(𝑡) by 
simple integration and subtraction. Having solved for 𝑆(𝑡), 𝐼ଵ(𝑡), and 𝐼ଶ(𝑡), we then have: 

𝛽(𝑡) =
𝑁𝑓(𝑡)

𝑆(𝑡)൫𝐼ଵ(𝑡) + 𝐼ଶ(𝑡)൯
ఈ 

6.2 𝛽 regression 
6.2.1 Overview 
With 𝛽௙(𝑡) fit to the data, we next perform a log-linear regression using the open source mixed effects 
solver SLIME (https://github.com/zhengp0/SLIME) to determine the strength of the relationship 
between 𝛽௙(𝑡) and the various covariates. All covariates are assumed to have fixed effects while the 
intercept is allowed to vary by location. For location 𝑙, the regression is calculated as: 

ln൫𝛽௣,௟൯ = 𝛼଴,௟ + 𝑿௟𝜶 

such that the mean squared error between 𝛽௣,௟  and 𝛽௙,௟ (our fit from the previous stage) is minimised by 
location 𝑙. 𝛼଴,௟ is the random intercept for location 𝑙, 𝑿௟ is a matrix with a column for each covariate in 
the regression and a row for each day, and 𝜶 is the coefficient indicating the strength of the relationship 
between log 𝛽 and the covariate. Several coefficients in the model are bounded as described in their 
corresponding sections, while others are only constrained by directional bounds. As noted in (previous 
sections), not all covariates are time varying. These non-time varying covariates are used to explain 
some of the location specific variance otherwise absorbed into the random intercept. The time-variance 
and bounds of the coefficients are denoted in SI Table 11. A sensitivity analysis removing the constraints 
was conducted and described in SI Section 8. Using the fitted 𝛼 and the forecasted covariates, we 
produce, by draw, estimates of future transmission intensity 𝛽௣(𝑡). 

6.2.2 Fitted regression coefficients 
By draw, across all locations, each coefficient is approximated with a point estimate. Uncertainty in 
estimated coefficients, therefore, is calculated by looking at the distribution of these point estimates 
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across draws. Boxplots of these distributions are plotted by location in panels I through Q of even-
numbered figures in Appendices 1-3; summary statistics are described in SI Table 6. In addition to 
sharing the same coefficients for the location or location time varying coefficients, each location has a 
fitted random effect 𝛼଴,௟ with distributions derived similarly to those of the fined effects. Boxplots of 
these distributions are plotted by location in panel R of even-numbered figures in Appendices 1-3. 

6.2.3 Regression diagnostics 
Although the model is fit in log-𝛽 space, it may be of more practical importance to compare the fit of the 
𝛽 regression in natural space. To this end, we compare, by draw and by location, the time-varying input 
𝛽 from SI Section 2.6 (Appendix 4 figures, panel A) with the time-varying fitted 𝛽 predicted from the 𝛽 
regression (Appendix 4 figures, panel B). By draw, we then take the difference between these to 
calculate residual estimates (again, in natural space, not in log space) (Appendix 4 figures, panel C). As 
with the estimates of the coefficients from the 𝛽 regression, the uncertainty displayed in each panel is 
based on the distribution of the values across draws. As expected, the uncertainty in the 𝛽 residuals is 
narrower than that of either the input 𝛽 trajectories or the fitted 𝛽 trajectories. 

To quantify the performance of the regression, we then calculated the root mean squared error (RMSE) 
associated with these residuals. Our infection estimation model has difficulties accurately quantifying 
the distribution of infection over the first few days of a location’s outbreak which thus corresponds with 
unreasonable variation in 𝛽 values over this time. As such, and due to this period’s relative minor impact 
on the 𝛽 regression overall, we illustrate our RMSE by calculating the square root of the average 
squared residual from April 1st to the present across locations (Appendix 4 figures, panel D). Once again, 
uncertainty is based on the distribution of RMSE across draws. While there is draw level differences in 𝛼, 
𝛾ଵ and 𝛾ଶ that impact how 𝛽 translates into 𝑅௖, at the mean level of each quantity, an error in 
estimating 𝛽 of 0.125 translates into an error in estimating 𝑅௖ of 0.5. Of course, as the outbreak 
progresses, an error of 0.125 in 𝛽 would then result in a smaller and smaller error in 𝑅௘௙௙ (directly 
proportional to the fraction of the population that remains susceptible. The large majority of states have 
median RMSEs less than 0.125 (41/53 states, counting the three sub-regions of Washington state 
separately), with notable exceptions in states with very low transmission (e.g., Montana and Hawaii). 
Finally, to assess the potential for changes in model performance through time, we alter the starting 
window across which we calculate the RMSE from April 1st forward in time a by week up through August 
1st (each time taking the RMSE up through the present) (Appendix 4 figures, panel E). While there is 
some variation in states through time, again the performance of the model remains consistent as we 
focus more and more on the recent past model fit, with most median RMSEs below 0.125. We note that 
New York has an increase in RMSE over time, but as they have experienced a substantial outbreak, 𝑅௘௙௙ 
would be substantially smaller than 𝑅௖ and thus this error would have a diminished impact. 

 

6.3 𝛽 adjustments 
To ensure continuity from our fitted 𝛽௙ from SEIR-fit to the predicted 𝛽ி into the future, we shift the 
predicted 𝛽௣. Generally speaking, we shift 𝛽௣ towards 𝛽௙ by first ensuring that on the day of transition, 
say 𝑇, 𝛽ி(𝑇) = 𝛽௙(𝑇). Then, over a window of time we slowly transition from the hard adjustment 
based on the residual at time 𝑇, we shift by the average residual between 𝛽௙ and 𝛽௣ over a window of 
time in the past. More specifically, define 𝑟(𝑡) as 
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𝑟(𝑡) = log ቆ
𝛽௙(𝑡)

𝛽௣(𝑡)
ቇ ,      𝑡 ≤ 𝑇 

and 𝛽ிభ
(𝑡) and 𝛽ிమ

(𝑡) as: 

𝛽ிభ
(𝑡) = exp൫𝑟(𝑇)൯ 𝛽௣(𝑡),       𝑡 ≥ 𝑇 

𝛽ிమ
(𝑡) = exp ൭

1

𝑛
෍ 𝑟(𝑇 − 𝑖 + 1)

௡

௜ୀଵ

൱ 𝛽௣(𝑡),     𝑡 ≥ 𝑇 

and transition weights 𝑤(𝑡) as 

𝑤(𝑡) = ൝
𝑀 − (𝑡 − 𝑇)

𝑀
,       𝑇 ≤ 𝑡 ≤ 𝑇 + 𝑀

0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Then, for a given 𝑛 and 𝑀, we define 𝛽ி(𝑡) as 

𝛽ி(𝑡) = 𝑤(𝑡)𝛽ிభ
(𝑡) + ൫1 − 𝑤(𝑡)൯𝛽ிమ

(𝑡) 

Based on out-of-sample tests similar to those described in the sensitivity analyses for optimal values of 
𝑀 and 𝑛, we found that the optimal 𝑛 was 42 and the optimal 𝑀 was for 𝑀 to be, by draw, drawn from 
a uniform distribution of windows from 7 to 28 days. 

 

6.4 SEIR-predict 
The general format of our predictions is relatively simple: we take the final predicted 𝛽ி and run our 
system of ODEs forward in time using our fitted compartment values at time 𝑇 as the initial conditions 
of the second SEIR model. 

There are however a number of simplifications made within our modelling formulation. First, we ignore 
the potential for importation which may be more likely in larger, more dense locations. Second, we 
assume a well-mixed population which may be more egregious in smaller, less dense locations. As two 
intermediate solutions for this, we introduce two correction factors. In each location we only use one or 
the other correction factor, and the use and magnitude of the correction is based on OOS predictive 
validity dropping 8 weeks of data and comparing the predicted outbreak to the observed one. The first 
correction factor allows for the addition of a small number of additional infections above and beyond 
those from the interaction between 𝐼ଵ and 𝐼ଶ and 𝑆. These can be envisaged as individuals traveling 
outside the location, becoming infected, and returning as exposed individuals. The second correction 
factor removes a small fraction of exposed individuals from the 𝐸 compartment and moves them 
directly to the recovered compartment. Our model acts on the fraction of individuals who are infectious, 
exposed, etc, and the results of allowing for fractional infectious individuals (and no possibility for truly 
‘zero’ infections) can alter the dynamics for small locations. These corrections can be mathematically 
described using 𝜃ା and 𝜃ି for the importation correction and the small location correction, 
respectively. Again, each location receives only one of these and they alter the SEIR model formulation 
for prediction as: 
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𝑑𝑆

𝑑𝑡
= −𝛽(𝑡)

𝑆(𝐼ଵ + 𝐼ଶ)ఈ

𝑁
− 𝜃ା𝑆 

𝑑𝐸

𝑑𝑡
= 𝛽(𝑡)

𝑆(𝐼ଵ + 𝐼ଶ)ఈ

𝑁
− 𝜎𝐸 + 𝜃ା𝑆 − 𝜃ି𝐸 

𝑑𝐼ଵ

𝑑𝑡
= 𝜎𝐸 − 𝛾ଵ𝐼ଵ 

𝑑𝐼ଶ

𝑑𝑡
= 𝛾ଵ𝐼ଵ − 𝛾ଶ𝐼ଶ 

𝑑𝑅

𝑑𝑡
= 𝛾ଶ𝐼ଶ + 𝜃ି𝐸 

With these correction factors identified, we can then run our ODEs forward (again using the Runge-Kutta 
4 algorithm), to have a complete time-series of infections through the end of the year. 

6.5 State-specific 𝛽 regression results 
With the state-specific static and time-varying covariates, the fitted coefficients, and the state-specific 
intercept, we calculate fitted values of 𝛽. In Appendices 1 through 3, we display, by state, first the values 
of each of the covariates (though time where appropriate) and then the resultant fitted beta. Within 
each covariate panel, we combine the values of the covariates that were used in the regression as well 
as the predicted values of the covariates across the various scenarios. Using the predicted values of the 
covariates, as well as the residual averaging described in Section 5.3, we estimate future values of 𝛽 
inpanel B.  

There are numerous diagnostics that we provide for each state (and each scenario). Here we describe 
how these diagnostics can aid in the interpretation of our model for three exemplar settings: California, 
New York, and Texas. 

 

6.5.1 Exemplar 1: California 
Beginning with Appendix 1 Figure 12, panel G displays the resultant smooth estimate of daily deaths, 
here based on observed daily deaths and observed daily cases. The final red spline represents the mean 
of 1,000 draws with the lighter shaded red representing the 95% uncertainty interval. Draws from this 
distribution are then back-cast into draws of daily infections. These are the input to the calculation of 
𝛽(𝑡) in SI section 5.1.3. 

Each of the time-varying covariates for the 𝛽 regression are plotted in the top row of Appendix 1 Figure 
12, with the part of these covariates that goes into the regression indicated by those to the left of the 
dashed line (which represents the last day of estimated daily infections based on data). There are 
numerous versions of mobility and mask use (all only different in the future) corresponding to the 
respective scenarios (e.g., ‘Mask Use Best’ here is the mask covariate for the scenario where mask use 
goes up to 95%). The fitted value of the corresponding coefficients for each covariate (static and time-
varying) is displayed in panels I through R). Here, the uncertainty is based on the distribution of the draw 
level mean estimates. Each of the sub-panel boxplots is identical across panels because this diagnostic 
comparison is comparing multiple scenarios from the same base model run (we frequently use these 
same diagnostics to compare one week’s run to the last). Here, for example, we can see the average 
effect of mobility is to increase log beta by 0.095 for each 1% increase towards normal movement. We 
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can also see the effect of the bounds on coefficients such as mask use in that the model frequently 
would prefer a larger impact of masks but is bounded by our a priori assumption (as described in the 
mask use section 3.4). 

Appendix 1 Figure 11 shows the resultant 𝛽 fit from the regression (panel B before the dashed line). This 
is then used to forecast new infections in the SEIR model and the corresponding 𝑅௘௙௙ is plotted in panel 
A. A deeper diagnostic on this 𝛽 regression is shown in Appendix 4 Figure 5, analogous to panels C and D 
in Appendix 1 Figure 11. In the detailed diagnostic,draw level difference are calculated between the 
‘observed’ 𝛽 (the 𝛽 that came out of the 𝛽 fitting described in SI Section 5.1.3) and the predicted 𝛽 from 
the 𝛽 regression. This difference is displayed, by draw, in panel C, and the overall distribution of draw-
level root-mean squared errors (RMSEs) from April 1 to present is shown in panel D. Here we see the 
median RMSE is 0.09, with a range from 0.03 to 0.2. Finally, in panel E, we display the changes in the 
RMSE as we shorten the range of residuals we use to calculate it. For example, we see that if we only 
look at the residuals over the last few weeks, the range of RMSEs grows substantially, but the median is 
less than 0.125. 

Going back to Appendix 1 Figure 11, panel D shows the calculated beta residual mean used in the 
adjustment of 𝛽 as described in Section 5.3. Using this adjustment, and the forecasted covariates we get 
our final forecasted 𝛽 (panel B after the dashed line). Here we see that the model was systematically 
under-estimating by about 0.26 (thus giving us a positive residual beta) and thus our 𝛽 estimate from 
our regression was increased correspondingly. This final 𝛽 is then re-run through the SEIR model to 
estimate daily infections (panel E) and using the IFR and infection-to-death delay we estimate daily 
deaths. These daily deaths (in death rate space) are used in the re-implementation scenario. We can see 
in California, we predict a mandate re-implementation would be justified on October 15th (based on the 
red line dropping on that day in panel E) but its effect on deaths is not seen until October 25th (based on 
the red line dropping on that day in panel F). Finally, results by day are aggregated to given cumulative 
cases by scenario and drawn and displayed on panels G and H, respectively). 

Digging into the results for California, we see a large predicted increase in infections and deaths later in 
the year (even in the mask scenario, Appendix 1 Figure 11, panels E and F). Going to the covariates in 
Appendix 1 Figure 12, we see that mask use is already at 62%, and testing is already at 0.00325, so there 
is not much room for improvement. Conversely, mobility was never estimated to be extremely low and 
is projected to only be 15% below normal by the end of the year in the mandate easing scenario. Thus, 
the main time-varying covariate that changes in the remainder of 2020 is the pneumonia seasonality 
covariate, and it is this covariate that drives our estimated increases.  

6.5.2 Exemplar 2: New York 
Following the same path through the diagnostics for New York as we did for California, we start with 
Appendix 1 Figure 68, panel G, and the estimated daily deaths. In this panel, reported data on daily 
deaths, daily infections, and daily hospitalisations are combined and fit to a spline to produce 1,000 
draws of estimated daily deaths. We can see the huge peak in deaths observed in mid-April and the 
substantial and sustained decline since that point. 

Regarding the covariates, shown in Appendix 1 Figure 68, panels A through F, we also see that mobility 
reached much lower levels in New York than California but has already returned to being only 27% 
below baseline. Testing rose dramatically in June and has stayed relatively stable; mask use also climbed 
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in the same time period to approximately 60%. Panels I through R of the same figure show coefficients 
fit to each covariate. Because most coefficients are based on a global fit, they remain the same across 
locations; the exception is the location-specific random intercept, shown in panel R. 

Appendix 4 Figure 33 shows the ‘observed’ and predicted 𝛽 for New York. Although our regression 
predicts a decline in transmission in New York, our covariates are unable to capture the steepness of this 
decline (as shown by the large negative residuals in late July and August; see panel C). This translates 
into a relatively large RMSE when we only focus on the last few weeks of data (panel E). This in turn 
translates into a relatively large adjustment based on the residual averaging for 𝛽; these residuals can 
be seen in Appendix 1 Figure 67, panel D. Our final 𝛽 forecast (Appendix 1 Figure 67, panel B) does show 
a predicted increase in transmission intensity, but as can be seen from the corresponding 𝑅௘௙௙ plot 
(panel A), 𝑅௘௙௙ is substantially lower than 1 and our forecast expects relatively little transmission. This 
is, of course, both a function of the model fit and the relatively large fraction of the population that has 
already been exposed (estimated here to be 20%), reducing 𝑅௘௙௙.  

 

6.5.3 Exemplar 3: Texas 
We chose Texas as our third exemplar because, like New York, it has already experienced substantial 
transmission, but like California we expect it to experience substantial transmission in the future. 

Following the same path through the diagnostics as we did for California and New York, we start with 
Appendix 1 Figure 90, panel G, and the estimated daily deaths. There was evidence of an outbreak in 
May and June, but more worrying there is evidence of a larger outbreak beginning in July and ongoing. 
This is based on both daily death data and daily case data. 

Reviewing model covariates in Appendix 1 Figure 90, panels A through F, we see that testing has actually 
come down in recent weeks and mask use appears to have stabilised since early August. With relatively 
high mobility, low testing, and the pneumonia seasonality at its low point now, it is not surprising that 
we expect more transmission in the future. Note here that the daily death rate is currently at a point 
where our mandate-reimposition scenario would expect mandates to be re-imposed (as can be seen 
from the precipitous drop in mobility, panel B). 

From Appendix 4 Figure 44 we can see that, similar to New York but going in the other direction, our 
model did not expect the most recent outbreak in Texas (panel C, positive residuals from mid-June 
forward). Given our model missing this outbreak, it is not surprising that residual averaging adjustment 
(Appendix 1 Figure 89, panel D) is positive, indicating an upwards adjustment of or forecasted 𝛽. 
Combining this adjustment with an estimated 𝑅௘௙௙ greater than 1 (Appendix 1 Figure 89, panel A) with 
covariates that in aggregate do not reduce 𝛽 leads to estimates of a continued outbreak in the 
mandates easing scenario (panel E). In the reference scenario, mandates are re-imposed reducing 
mobility and thus 𝛽, leading to an 𝑅௘௙௙ less than 1 and a decline in transmission. However, in that 
scenario (and the mask scenario) we do expect 𝛽 to grow for the rest of the year and in both scenarios, 
𝑅௘௙௙ eventually surpasses 1. As all covariates except for pneumonia seasonality are relatively constant in 
the last two months of the year, this increase can be clearly attributed to our seasonal driver. Texas is 
also a good example of the complex relationship between 𝛽 and 𝑅௘௙௙: although the 𝛽 for the mandate 
easing scenario is the highest, the 𝑅௘௙௙ is the lowest in December (due to a depletion of susceptibles). It 
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is difficult to see, but within the reference scenario there is also a second re-imposition of mandates at 
the end of 2020 as deaths climb past the re-imposition threshold (Appendix 1 Figure 89, panels A, B, E; 
Appendix 1 Figure 90, panel B). This occurs so late in the year that its impact is not however seen in 
deaths themselves (Appendix 1 Figure 89, panel F). 

 

7 Final data combination and summarization 
The transmission model produces 1,000 full time series (including projections) of infections and deaths. 
We summarise draws into means and 95% UIs for reporting. To control for extreme values, the top 2.5% 
and bottom 2.5% of draws are dropped and replaced through random resampling of the remaining 950 
draws. The summarised deaths and infections are then used as inputs to the hospital resource use 
microsimulation (see SI Section 7). 

7.1 Scenarios 
In all scenarios, schools are assumed to reopen on 15 August, 2020 and mobility is projected to increase 
as outlined in SI Sections 3.1 and 3.2. We estimate the likely bounds on the trajectory of the epidemic by 
state by investigating three main scenarios: (1) continued removal of social distancing mandates (2) 
reimposition of social distancing mandates after a threshold of daily deaths is reached, and (3) adoption 
of universal masking together with threshold induced mandate re-imposition.  

The “mandates easing” scenario models what would happen in each state if the current pattern 
of lifting social distancing mandates continues and new mandates are not imposed; the model identifier 
for this scenario is 2020_08_21.04. 

As a more plausible scenario, we use observations from the first phase of the pandemic to 
predict the likely response of state and local governments during the second phase. This plausible 
reference scenario assumes that in each location the trend of easing SDM will continue at its current 
trajectory until the daily death rate reaches a threshold of 8 deaths per million. If the daily death rate in 
a location exceeds that threshold, we assume that SDM will be reintroduced for a six-week period. The 
choice of threshold (of a rate of daily deaths of 8 per million) represents the 90th percentile of the 
distribution of daily death rate at which US states implemented their mandates during the first months 
of the COVID-19 pandemic. We selected the 90th percentile rather than the 50th percentile to capture an 
anticipated increased reluctance from governments to re-impose mandates because of the economic 
effects of the first set of mandates. In locations that do not exceed the threshold of a daily death rate of 
8 per million, the projection is based on the covariates in the model and the forecasts for these to 28 
February 2021. In locations were the daily death rate exceeded 8 per million at the time of our final 
model run for this manuscript (21 September, 2020), we are assuming that mandates will be introduced 
within 7 days. The model identifier for this scenario is 2020_08_22.01. 
 The final boundary scenario of universal mask wearing evaluates what would happen if 95% of 
the population in each state always wore a mask when they were in public. This value was chosen to 
represent the highest observed rate of mask use observed globally during the COVID-19 pandemic 
through June of 2020 (SI Section 3.4). In this scenario, we also assume that if the daily death rate in a 
state exceeds 8 deaths per million, SDMs will be reintroduced for a six-week period. The model identifier 
for this scenario is 2020_08_22.02. 

Two additional, derivative scenarios were included to assist understanding and policy resolution 
of these main framework scenarios: a less comprehensive mask scenario of 85% public use of masks and 
a scenario of universal mask wearing in the absence of any additional NPIs. The less comprehensive 
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mask wearing scenario evaluates what would happen if 85% of the population in each state always wore 
a mask when they were in public. As with the universal mask scenario, we also assume that if the daily 
death rate in a state exceeds 8 deaths per million, SDMs will be reintroduced for a six-week period. The 
model identifier for this scenario is 2020_08_22.07. Universal mask use by 95% of the population was 
also evaluated in a scenario that assumes no imposition of other NPIs at any threshold value of daily 
deaths. The model identifier for this scenario is 2020_08_22.07. Cumulative deaths for 21 September 
2020 through 28 February 2021, maximum estimated daily deaths per million population, date of 
maximum daily deaths, and estimated Reffective on 28 February 2021 for these additional derivative 
scenarios are available in Supplemental Information Table 12. 

All scenarios presume an increase in mobility associated with the opening of schools across the 
country. 

8 Hospital resource use microsimulation 
The hospital use microsimulation is run for each projected death across time and across death-draws. 

For each death, we: 

1. Simulate the age of the deceased using normalised estimated mortality rates as the probability 
for belonging to that age. That is, we assign the death to 𝑎𝑔𝑒𝐵𝑖𝑛௜  with probability 
𝑀𝑅௔௚௘஻௜௡೔

(𝑙𝑜𝑐)/Σ௜𝑀𝑅௔௚௘஻௜௡೔
(𝑙𝑜𝑐). Call this 𝐴஽. See Section 5.1 for more details. 

2. We determine how many days prior to death the deceased entered the hospital. Based on data 
from New York State we set this to be 6 days prior to death. 

3. We assign the deceased to an ICU bed for their entire admittance period.  

4. Based on 𝐴஽, we use 𝐻: 𝐷஺ವ
 to estimate the number of individuals of the same age group that 

would have entered the hospital on the same day as the deceased to result in 1 death in that 
age group on the date of death. This age-hospital-cohort will pass through the hospital and all 
are assumed to survive. See section 5.4 for further details.  

5. For each individual in the age-hospital-cohort, they have a 6.3% chance of getting admitted to 
the ICU (see note below on derivation of 6.3%). 

a. Those that visit the ICU are assumed to have a hospital stay of 20 days, the middle 13 of 
which are in the ICU. 

b. Those that don’t visit the ICU are released after eight days. 

6. To determine ventilation use, we assume 85% of individuals in the ICU require invasive 
mechanical ventilation based on data from New York State. 

By performing this simulation for each death, and each associated member of the age-hospital-cohort, 
we are able to summarise future hospital usage needs for general beds, ICU beds, and ventilators. 
Finally, using a combination of data sources, we compare the estimated number of general beds and ICU 
beds with availability. 



  

 

35 
 

Notes: 

1. Based on hospital data from New York State up through Mar 31, 2020, the average ICU bed 
counts to hospital census was 25%. Given the assumptions about lengths of stay for those who 
die, those who recover, and their duration in the ICU, the conditional probability of a recovering 
patient going to the ICU was back calculated to be 6.3% to keep the long-term ICU usage at 25%. 
When possible, location-specific hospitalisation data is used to calculate the probability of a 
recovering patient going to the ICU. In the absence of data from a particular location, the mode 
is used and the ICU admission probability is calculated to be 8.8% for a recovering patient. 

9 Sensitivity analyses 
To assess the impact of our model formulation and associated assumptions on our future predictions, 
we have conducted a number of sensitivity analyses. Here we present two different types of model 
assessment: out-of-sample (OOS) predictive validity and assessment on future predictions. For both 
assessments, we consider the following five alternative model formulations: 1) the base model without 
the mask covariate; 2) the base model without the pneumonia seasonality covariate; 3) the base model 
without the mobility covariate; 4) the base model without the testing covariate; and 5) the model with 
all of the covariates, but without the constraints on the covariate coefficients other than directional 
constraints.  

We conduct this sensitivity analysis periodically to assess changes in model performance through time. 
As discussed below for mobility, the fitted relationship between any individual covariate and observed 
transmission may change over time, either increasing or decreasing its perceived importance. Here we 
present the last two sets of sensitivity analyses. It is important to note that these regressions are fit 
globally to 400+ locations (although here we present how well the model fits in just the US. 

9.1 OOS predictive validity analyses 
For the OOS predictive validity analyses, we dropped a set number of weeks of data, re-ran the entire 
model fitting pipeline and then compared cases and deaths predicted by week compared to the 
cumulative US input death estimates for the publication run. In these experiments, we used the 
observed values of the covariates as opposed to forecasting based on the state of those covariates eight 
weeks ago. Here we present two of these analyses: dropping eight weeks of data and dropping four 
weeks of data. Analyses 1 was run based on all data accumulated by July 4th, while Analyses 2 was run 
based on all data accumulated through August 14th (associated with the models presented in the main 
text). On those dates, there were several states which did not have available data on the last few days 
before the cutoff. As such, using our knowledge on those dates as the observed universe, we did not 
have a full set of “ground truth” for the final week and the comparisons are thus across seven weeks and 
three weeks, respectively.  

These two sets of our analyses highlight difficulties in capturing rapid changes in transmission intensity 
with covariates that might not vary at the same rate. In the first analyses, we generally overestimated, 
and the pneumonia seasonality covariate helped constrain the predicted (and not realised) increases in 
transmission. In the second analyses, the all models in the first sub-experiment missed the outbreak in 
mid-July and August and as such the covariate that was previously reining in transmission (pneumonia 
seasonality) appeared to exacerbate already overly low predictions. Interestingly, in the second sub-
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experiment within the second analyses (which included some of that mid-July / August outbreak), all 
models appeared to have the information they needed to successfully predict the rest of the way. 

9.1.1 8-week OOS analyses 
9.1.1.1 Analyses 1 
After dropping all data back to May 9th and rerunning the entire COVID pipeline (except covariate 
prediction) we found the inclusion (or rather exclusion) of any of the time-varying covariates had 
substantial influence on predictive validity (SI Figure 7). The worst performing model, by far, was the 
model that excluded pneumonia seasonality as a covariate. The model that excluded masks was also 
substantially inferior to the base model. Conversely, models that excluded mobility or testing out-
performed the full model. Finally, as expected, a model that ignored biologically plausible maximum 
impacts of the covariates (‘Unconstrained’ in SI Figure 7) was also superior to the model with the 
constraints in place. 

At the end of the 4th week of the predictions (June 6th), full model over-estimated deaths by 13,300 
deaths. While every model assessed here over estimated deaths, the model without pneumonia 
seasonality over-estimated the cumulative number of deaths by 17,900 (34% higher than the full 
model), while the model without masks estimated 16,800 more deaths than observed (26% higher than 
the full model). The model without mobility only over-estimated cumulative deaths by 5,600 deaths 
(41% of the full model’s error), while the model without testing over-estimated cumulative deaths by 
8,700 deaths (65% of the full model’s error). The unconstrained model performed similarly to that of the 
model without testing, over-estimating cumulative deaths by 8,100 (61% of the full model’s error). 

At the end of the 7th week of predictions (June 27th), both the magnitudes of the errors as well as the 
relative differences grew substantially. The full model over-estimated cumulative deaths by 48,700 
deaths. The model without the pneumonia seasonality covariate produced massive estimated death 
counts, over-estimating by 83,900 deaths (172% the error of the full model). Excluding masks also 
continued to result in large over-estimations, predicting 71,100 more deaths than observed by June 27th 
(146% the error of the full model). The models that outperformed the full model increased their 
dominance. The model without testing predicted 20,400 more deaths than observed (50% the error of 
the full model), while the unconstrained model predicted 21,600 more deaths than observed (50% the 
error of the full model. Finally, the model without mobility tracked actual cumulative deaths well, and 
‘only’ over-estimated by 9,900 deaths (26% the error of the full model).  

9.1.1.2 Analyses 2 
After dropping all data back to June 23rd and rerunning the entire COVID pipeline (except covariate 
prediction) we again found the inclusion (or rather exclusion) of any of the time-varying covariates had 
substantial influence on predictive validity (SI Figure 8). In this OOS analyses, the model predicted fewer 
infections and deaths than observed across all experiments and the runs that included the pneumonia 
seasonality covariate (which from July to August would contributed to lowering transmission intensity 
performed worse than the run which dropped this covariate. The experiment without the testing 
covariate also did better than the full model (or the unconstrained model). Again, based on the 
understanding of transmission from the beginning of the outbreak to June 23rd, we would have expected 
both increases in testing and decreases due to seasonality to result in fewer infections and death than 
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were observed (that is to say, the outbreak in mid-July to August was unexpected based on what we had 
seen from the beginning of the outbreak up to June 23rd.  

At the end of the 4th week of the predictions (July 22nd), all models were still performing well, with all 
errors less than 2,200 deaths (SI Figure 8) compared to an observed cumulative number of deaths of 
142,278. The model that excluded pneumonia seasonality outperformed the full model with a slight 
overestimation of the outbreak (212 more deaths than observed) and the no-testing and no-masks 
models also had closer estimates of deaths than the full model, underestimating by 754 and 1,064 
deaths respectively. The full model performed better than the unconstrained model underestimating by 
1,257 deaths compared to underestimating by 1,900 deaths and the model that removed mobility 
performed the worst, underestimating by 2,148 deaths. 

In the exercise where we forecasted the June 23rd model forward 7 weeks (August 11th), all models 
underestimated the magnitude of the outbreak by at least 13,340 deaths. The ‘best’ model was again 
the one that dropped the pneumonia seasonality. The rest of the models were all very comparable with 
underestimations that missed between 13,340 deaths (for the model that dropped testing) and 18,555 
deaths (for the model without mobility). 

 

9.1.2 4-week OOS analyses 
9.1.2.1 Analyses 1 
After dropping all data back to June 6th and rerunning the entire COVID pipeline (except covariate 
prediction) we again found the inclusion (or rather exclusion) of any of the time-varying covariates had 
substantial influence on predictive validity (SI Figure 9). Again, the worst performing model, by far, was 
the model that excluded pneumonia seasonality as a covariate. Interestingly, the next worst model was 
the one that excluded testing. The model that excluded masks was again inferior to the base model. The 
models that excluded mobility or removed constraints were again superior to the full model, but the 
superiority was diminished relative to the same forecast horizon comparisons in the 8-week analyses. 

At the end of the 3rdweek of the predictions (June 27th), full model over-estimated deaths by 5,000 
deaths. Again, every model assessed here over estimated cumulative US deaths. The model without 
pneumonia seasonality over-estimated the cumulative number of deaths by 6,100 (23% higher than the 
full model), the model without testing over-estimated cumulative deaths by 5,300 (7% higher than the 
full model, and the model without masks estimated 5,100 more deaths than observed (4% higher than 
the full model). The model without mobility over-estimated cumulative deaths by 3,100 deaths (62% of 
the full model’s error), while the unconstrained model over-estimated cumulative deaths by 4,000 
deaths (80% of the full model’s error). 

9.1.2.2 Analyses 2 
After dropping all data back to July 21st and re-running the pipeline (SI Figure 10) we see marked 
differences in performance compared to the 8-week OOS of Analyses 2. Here every model appears to 
have the information needed to capture the increases seen in the past 4 weeks. From July 21st to August 
14th, there were an estimated 14,514 deaths, and all experiments were able to produce estimates within 
1,000 (though all were underestimates). The full model and the full model without constraints 
underestimated the most, missing the observed number of deaths by 990 and 985 respectively, with the 
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model that dropped mobility being third worst underestimating deaths by 968 deaths. The models that 
dropped either masks, pneumonia seasonality, or testing all performed similarly with each 
underestimating by fewer than 500 deaths (482, 380, and 381, respectively). It should be noted that 
although not displayed in the figure diagnostic, in the 4th week all models continued to perform well, but 
the relative rankings were almost inverted (with the full model and the full model without constraint 
performing the best and the model without pneumonia seasonality performing the worst, albeit still 
quite well). 

9.1.3 Mobility and the changing transmission landscape 
While the OOS analysis strongly supports the inclusion of covariates that track masks and pneumonia 
seasonality (as the exclusion of these covariates greatly degraded the model’s predictive performance), 
there was also a strong indication that the mobility covariate was detrimental to the performance of the 
model. While these results certainly warrant further investigation, there are several clear observations 
that can already be made. As has been noted elsewhere, while declines in mobility strongly correlated 
with declines in transmission early in the outbreak, the correlation was more muted as mobility 
returned to normal levels51. One plausible hypothesis for this is that human behaviour was altered 
during the course of the outbreak and a measured level of ‘mobility’ did not mean the same in February 
and March as it did in April and beyond. As an example, mask usage had greatly increased over this time. 

The current model formulation fits a regression to transmission intensity using the entire past of the 
outbreak, equally weighting each day’s residual with each other day. As such, an 8-week OOS test would 
have relatively few days post-rebound of mobility and relatively many days when mobilities decline was 
strongly tied to that of transmission. Likewise, the 8-week OOS test would contain relatively few days 
that underscored the importance (and high usage) of masks. To dig a little deeper into this potential 
explanation for some of the superiority of the mobility-free model, we looked at the fitted coefficient on 
mobility for the 8-week and 4-week OOS full models and compared them to the production run. As can 
be seen in SI Figure 12, the effect of mobility on transmission intensity has decreased as more post-
rebound data has entered the model. As has been seen over the weeks at the end of June and beginning 
of July, 2020, reductions in social distancing are coincident with increases in transmission. As such, it 
seems impractical to fully remove mobility from a model of COVID. That being said, the OOS assessment 
must be repeated continually to fully understand the impact of these covariates on model utility. 

9.2 Assessment of future predictions 
A different sort of sensitivity analysis that can complement the predictive validity assessment is one that 
investigates potential changes in the final conclusions of the study to altered assumptions. To this end, 
we re-predicted COVID transmission and deaths through the end of 2020 using all available data but 
using the altered model formulations described above. The OOS analyses illustrated the importance of 
investigating the impact of each covariate in the model predictions, as the mobility and mask covariates 
are directly tied to two of the three scenarios presented in this manuscript. Thus, the scenario we 
considered was the worst-case, mandate easing scenario. 

9.2.1 Analyses 1 
In the scenario where mandates are eased with no re-implementation, the estimated number of COVID 
deaths by October 1st was 184,900 from the full model. Although the pneumonia seasonality covariate 
indicates an increase in transmission risk in the fall, the model without pneumonia seasonality estimated 
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202,900 deaths on October 1st (10% larger than the full model). The model without testing and the 
model without masks were very similar to the full model, with 186,400 and 186,600 deaths respectively 
(both 1% larger than the full model). The model without mobility and the unconstrained model both 
produced lower estimated by October 1st, with 175,800 and 174,700 deaths, respectively (both 95% the 
magnitude of the full model). In general, there was agreement across all the models as to the magnitude 
of the loss of life due to COVID by the beginning of October. 

Alternatively, there were substantial deviations across the model predictions from October through the 
remainder of the year. In the mandate-easing scenario, the full model predicts 399,900 deaths by 
January 1st. The model without pneumonia seasonality predicted a massive outbreak in the last 3 
months of 2020, with and an estimated 845,200 total COVID deaths by January 1st (211% the full model 
value). This came from an almost doubling in total deaths in both November and December (November 
1st : 273,500 cumulative deaths, December 1st: 445,800 cumulative deaths). Both the model without 
masks and the model without testing produced final death values 29% higher than those of the full 
model by January 1st (515,000 and 514,100 respectively). The unconstrained model continued to 
produce fewer deaths than the full model, but still ended estimating 369,400 deaths by January 1st (92% 
the full model). Just as the model without pneumonia seasonality estimated a massive outbreak in the 
last 3 months of 2020, the model without mobility estimated a large reduction in transmission over the 
last 3 months, estimating 49,600 deaths from October 1st to the end of the year. While this is a huge loss 
of life, it must be noted that the scenario used here is the worst-case scenario presented, and compared 
to the other models’ estimates, 49,600 deaths is substantially smaller than other models. The final 
estimated death total is 225,400 which is 56% of the full models’ estimates. 

In the current COVID transmission landscape (where mandate re-imposition is being considered due to a 
resurgence in cases and deaths), it is possible that the effect of mobility (or any other covariate) will 
change once again. It remains critical to continually re-evaluate the inclusion (or exclusion) of any 
covariate as well as assess their impact. 

9.2.2 Analyses 2 
In the scenario where mandates are eased with no re-implementation, the estimated number of COVID 
deaths by October 1st was 222,753 from the full model. The model without pneumonia seasonality, the 
model without testing and the full model without constraints all predicted deaths within 500 of this 
(222,252, 223,137, and 222,425, respectively) while the model without masks or without mobility had 
deviated by more than 3,000 by October 1 (225,943 and 217,069, respectively). 

The differences between models substantially increase from October 1st through the end of the year. 
The full model estimates 569,354 deaths by 1 January 2021 without any mandate re-imposition. Models 
without masks, testing, or constraints all produce much higher results (637,419 deaths, 713,618 deaths 
and 668,746 deaths, respectively). Conversely, models without mobility or pneumonia seasonality 
estimate substantially fewer deaths (399,206 and 332,491, respectively). As with the results of this 
sensitivity analysis for Analyses 1, it must be noted that these results are in the absence of any of the 
scenarios that control for future infections (e.g., mandate re-imposition or increases in mask use). The 
differences in those settings would naturally be smaller as the total number of infections would be 
reduced. Of course, we did not attempt that comparison as it would not work in the scenarios where the 
alteration occurs on a covariate that is dropped from the model. Nonetheless, these two analyses 
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underscore the need to repeatedly re-evaluate both the performance of the overall model as well as the 
utility of each covariate in the model to most accurately capture changes in the SARS-CoV-2 
transmission landscape. 
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Supplementary Figures 
SI Figure 1. Schematic representation of modelling process. Numbers correspond to 
Supplementary Information sections detailing each portion. 
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SI Figure 2 Time trends and relationship with deaths for cumulative cases and 
hospitalisations in Florida. 
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SI Figure 3 Estimated death curve in cumulative and ln(daily) in Florida. Samples from 
refit model are shown in ln(daily) plot. 
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SI Figure 4. Trends of the number of mandates (out of 6) on for each location in the 
modelling hierarchy 

 

 

Each line represents a country, and the number of mandates implemented on a given date is shown on 
the Y axis. By the middle of March, most countries around the world had implemented at least 5 
mandates. 
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SI Figure 5. Time trends of the average number of mandates “on” for each region of the 
world.  

 

Each line represents a Global Burden of Disease region, and the average number of mandates 
implemented in all countries of that region is shown on the Y axis. 
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SI Figure 6. MR-BRT model of the US pattern of seasonality of logit ratio vs week.  

 

 

The black line shows the model estimates, the blue points are data included in the model, and the red 
points are data excluded from the model. 
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SI Figure 7. Eight week out-of-sample predictive validity (July 4 model run) 

Figure panels display the results of fitting and predicting our model when holding out eight-weeks of 
death and case data, based on input data and covariates as of July 4. We ran our reference model 
(bottom row, red line) and models in which we dropped a single time varying covariate from the 
regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors 
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’) 
the priors. The predictions from these models are shown on the bottom row. The top left panel shows 
all these models compared to the observed cumulative deaths in the United States (white dots). The 
upper right panels show the out-of-sample error, binned by week, in both natural and absolute error. 
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SI Figure 8. Eight-week out-of-sample predictive validity (August 21 model run) 

Figure panels display the results of fitting and predicting our model when holding out eight-weeks of 
death and case data, , based on input data and covariates as of August 21. We ran our reference model 
(bottom row, red line) and models in which we dropped a single time varying covariate from the 
regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors 
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’) 
the priors. The predictions from these models are shown on the bottom row. The top left panel shows 
all these models compared to the observed cumulative deaths in the United States (white dots). The 
upper right panels show the out-of-sample error, binned by week, in both natural and absolute error. 
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SI Figure 9. Four-week out-of-sample predictive validity (July 4 model run) 

Figure panels display the results of fitting and predicting our model when holding out four weeks of 
death and case data, based on input data and covariates as of July 4. We ran our reference model 
(bottom row, red line) and models in which we dropped a single time varying covariate from the 
regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors 
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’) 
the priors. The predictions from these models are shown on the bottom row. The top left panel shows 
all these models compared to the observed cumulative deaths in the United States (white dots). The 
upper right panels show the out-of-sample error, binned by week, in both natural and absolute error. 
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SI Figure 10. Four-week out-of-sample predictive validity (August 21 model run) 

Figure panels display the results of fitting and predicting our model when holding out four weeks of 
death and case data, based on input data and covariates as of August 21. We ran our reference model 
(bottom row, red line) and models in which we dropped a single time varying covariate from the 
regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors 
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’) 
the priors. The predictions from these models are shown on the bottom row. The top left panel shows 
all these models compared to the observed cumulative deaths in the United States (white dots). The 
upper right panels show the out-of-sample error, binned by week, in both natural and absolute error. 
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SI Figure 11. Fitted coefficient on mobility for the 8-week and 4-week out-of-sample and 
full “production run” versions of the model (July 4 model run) 
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SI Figure 12. Fitted coefficient on mobility for the 8-week and 4-week out-of-sample and 
full “production run” versions of the model (August 21 model run) 
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Supplementary Tables 
 

SI Table 1. GATHER compliance 
# Checklist item Location 

Objectives and funding 

1 Define the indicators, populations, and 
time periods for which estimates were 
made. 

Main manuscript 

2 List the funding sources for the work. Main manuscript 

Data Inputs 

For all data inputs from multiple sources that are synthesised as part of the study: 

3 Describe how the data were identified and 
how the data were accessed.  

SI Sections 2-3 

4 Specify the inclusion and exclusion 
criteria. Identify all ad-hoc exclusions. 

SI Sections 2-3  

5 Provide information on all included data 
sources and their main characteristics. For 
each data source used, report reference 
information or contact name/institution, 
population represented, data collection 
method, year(s) of data collection, sex and 
age range, diagnostic criteria or 
measurement method, and sample size, as 
relevant.  

SI Section 2, SI Tables 2-10 

 

See data availability statement in main manuscript; SI 
Section 2, SI Tables 2-10 

 

6 Identify and describe any categories of 
input data that have potentially important 
biases (e.g., based on characteristics listed 
in item 5). 

SI Section 2, SI Tables 2-10 

 

For data inputs that contribute to the analysis but were not synthesised as part of the study: 

7 Describe and give sources for any other 
data inputs.  

See data availability statement in main manuscript; SI 
Section 2, SI Tables 2-10 

 

For all data inputs: 
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8 Provide all data inputs in a file format 
from which data can be efficiently 
extracted (e.g., a spreadsheet as opposed 
to a PDF), including all relevant meta-data 
listed in item 5. For any data inputs that 
cannot be shared due to ethical or legal 
reasons, such as third-party ownership, 
provide a contact name or the name of 
the institution that retains the right to the 
data. 

See data availability statement in main manuscript; SI 
Section 2, SI Tables 2-10; data source files linked directly 
from the online version of the paper 

 

Data analysis 

9 Provide a conceptual overview of the data 
analysis method. A diagram may be 
helpful.  

Main manuscript, SI Figure 1, SI Section 2, SI Tables 2-10 

10 Provide a detailed description of all steps 
of the analysis, including mathematical 
formulae. This description should cover, as 
relevant, data cleaning, data pre-
processing, data adjustments and 
weighting of data sources, and 
mathematical or statistical model(s).  

SI Sections 2, 4-7 

11 Describe how candidate models were 
evaluated and how the final model(s) 
were selected. 

SI Sections 2, 4-7 

12 Provide the results of an evaluation of 
model performance, if done, as well as the 
results of any relevant sensitivity analysis. 

SI Sections 2, 4-7 

13 Describe methods for calculating 
uncertainty of the estimates. State which 
sources of uncertainty were, and were 
not, accounted for in the uncertainty 
analysis. 

SI Sections 2, 4-7 

14 State how analytic or statistical source 
code used to generate estimates can be 
accessed. 

Code is provided in online repositories: 
https://github.com/ihmeuw/covid-model-seiir-
pipeline  

https://github.com/ihmeuw/covid-model-deaths-
spline 

Results and Discussion 
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15 Provide published estimates in a file 
format from which data can be efficiently 
extracted. 

SI Tables 2-10 

Results specific to the model run for this publication 
are available for download 
(https://ihmecovid19storage.blob.core.windows.net/a
rchive/2020-10-02/ihme-covid19.zip).  

16 Report a quantitative measure of the 
uncertainty of the estimates (e.g. 
uncertainty intervals). 

Main manuscript 

Online data visualization tool: 
https://covid19.healthdata.org 

17 Interpret results in light of existing 
evidence. If updating a previous set of 
estimates, describe the reasons for 
changes in estimates. 

Main manuscript 

18 Discuss limitations of the estimates. 
Include a discussion of any modelling 
assumptions or data limitations that affect 
interpretation of the estimates. 

Main manuscript, SI Sections 4-5 
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SI Table 2. Sources for epidemiological data by state 
Location Source 
United States of America, 
California 

United States - California Department of Public Health Daily 
COVID-19 Updates 2020 

United States of America, South 
Dakota 

United States - South Dakota Department of Health Novel 
Coronavirus (COVID-19) Updates and Information 2020 

United States of America, Texas United States - Texas Department of State Health Service COVID-
19 Fatalities Over Time by County 

United States of America, West 
Virginia 

United States - West Virginia Department of Health and Human 
Resources Coronavirus Disease (COVID-19) Cases 2020 

United States of America, 
Minnesota 

United States - Minnesota Department of Health Situation 
Update for Coronavirus Disease 2019 (COVID-19) 2020 

United States of America, Texas United States - Texas Department of State Health Service COVID-
19 Cases Over Time by County 

United States of America, Hawaii United States - Hawaii Department of Health COVID-19 Current 
Situation 2020 

United States of America, Florida United States - Florida Division of Emergency Management 
COVID-19 Data Report 2020 

United States of America, 
Maryland 

United States - Maryland Department of Health COVID-19 
Statistics 2020 

United States of America, 
Alabama 

United States - Alabama Department of Public Health COVID-19 
Data and Surveillance 2020 

United States of America, New 
Mexico 

United States - New Mexico Department of Health 2019 Novel 
Coronavirus Disease (COVID-19) Updates 2020 

United States of America, 
Nebraska 

United States - Nebraska Department of Health and Human 
Services Coronavirus COVID-19 Cases 2020 

United States of America, 
Delaware 

United States - Delaware Division of Public Health Coronavirus 
Disease (COVID-19) Data Dashboard 2020 

United States of America, 
Pennsylvania 

United States - Pennsylvania Department of Health COVID-19 
Cases 2020 

United States of America, Maine United States - Maine Division of Disease Surveillance Novel 
Coronavirus 2019 (COVID-19) Situation 2020 

United States of America, New 
Jersey 

United States - New Jersey Department of Health COVID-19 Data 
2020 

United States of America, 
Massachusetts 

United States - Massachusetts Department of Public Health 
COVID-19 Cases, Quarantine and Monitoring 2020 

United States of America, New 
Hampshire 

United States - New Hampshire Department of Health and 
Human Services 2019 Novel Coronavirus (COVID-19) Summary 
Report 2020 

United States of America, Oregon United States - Oregon Health Authority COVID-19 Updates 2020 
United States of America, Nevada United States - Nevada Department of Health and Human 

Services COVID-19 (Coronavirus) Data 2020 
United States of America, 
Connecticut 

United States - Connecticut Department of Public Heath COVID-
19 Update 2020 

United States of America, Utah United States - Utah Department of Health Overview of COVID-
19 Surveillance 2020 
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Location Source 
United States of America, 
Colorado 

United States - Colorado Department of Public Health and 
Environment COVID-19 Updates 2020 

United States of America, Arizona United States - Arizona Department of Health Services COVID-19 
Data 2020 

United States of America, 
Wyoming 

United States - Wyoming Department of Health COVID-19 Map 
and Statistics 2020 

United States of America, 
Montana 

United States - Montana Department of Health and Human 
Services COVID-19 Cases 2020 

United States of America, 
Oklahoma 

United States - Oklahoma State Department of Health COVID-19 
Current Situation 2020 

United States of America, 
Michigan 

United States - Michigan Department of Health and Human 
Services Coronavirus Data 2020 

United States of America, Illinois United States - Illinois Department of Public Health Coronavirus 
Disease 2019 (COVID-19) Statistics 2020 

United States of America, 
Tennessee 

United States - Tennessee Department of Health Epidemiology 
and Surveillance Data 2020 

United States of America, New 
York City (as a subset of New York 
State) 

United States - New York City Department of Health and Mental 
Hygiene Coronavirus Disease 2019 (COVID-19) Data 2020 

United States of America, Georgia United States - Georgia Department of Public Health COVID-19 
Daily Status Report 2020 

United States of America, Iowa United States - Iowa Department of Public Health Novel 
Coronavirus (COVID-19) Cases 2020 

United States of America, 
Wisconsin 

United States - Wisconsin Department of Health Services COVID-
19 Data 2020 

United States of America, 
Louisiana 

United States - Louisiana Department of Health Coronavirus 
(COVID-19) Information 2020 

United States of America, 
Mississippi 

United States - Mississippi State Department of Health 
Coronavirus Disease 2019 (COVID-19) Current Cases and 
Statistics 2020 

United States of America, North 
Dakota 

United States - North Dakota Department of Health Coronavirus 
Cases 2020 

United States of America, 
Arkansas 

United States - Arkansas Department of Health COVID-19 Status 
Updates 2020 

United States of America, Idaho United States - Idaho Division of Public Health COVID-19 Case 
Data 2020 

United States of America, North 
Carolina 

United States - North Carolina Department of Health and Human 
Services COVID-19 Dashboard 2020 

United States of America, Missouri United States - Missouri Department of Health and Senior 
Services COVID-19 Outbreak Data 2020 

United States of America, Alaska United States - Alaska Department of Public Health and Social 
Services Coronavirus Response Hub 2020 

United States of America, South 
Carolina 

United States - South Carolina Department of Health and 
Environmental Control COVID-19 Demographic Data by Case 
2020 
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Location Source 
United States of America, Virginia United States - Virginia Department of Health COVID-19 Cases 

2020 
United States of America, Ohio United States - Ohio Department of Health COVID-19 Dashboard 

2020 
United States of America, Rhode 
Island 

United States - Rhode Island Department of Health COVID-19 
Data Tracker 2020 

United States of America, 
Vermont 

United States - Vermont Department of Health COVID-19 Data 
2020 

United States of America, Indiana United States - Indiana COVID-19 Statewide Test, Case, and 
Death Trends 2020 

United States of America, Kansas United States - Kansas Department of Health and Environment 
Coronavirus Disease 2019 (COVID-19) Case Summary 2020 

United States of America, 
Kentucky 

United States - Kentucky Department for Public Health COVID-19 
Dashboard 2020 

United States of America, 
Washington 

United States - Washington State Department of Health COVID-
19 Cases by County and CDC Event Date 2020 

United States of America, 
Washington 

United States - Washington State Department of Health COVID-
19 Deaths by County, Date, Age Group and Sex 2020 
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SI Table 3. Alternate data repositories for state-level reporting 
 

Location Source 

Illinois United States - Illinois Department of Public 
Health Coronavirus Disease 2019 (COVID-19) 
Statistics 2020 

Maryland United States - Maryland Department of Health 
COVID-19 Statistics 2020 

Kentucky United States - Kentucky Department for Public 
Health COVID-19 Dashboard 2020 

Hawaii United States - Hawaii Department of Health 
COVID-19 Current Situation 2020 

Nebraska United States - Nebraska Department of Health 
and Human Services Coronavirus COVID-19 Cases 
2020 

North Carolina United States - North Carolina Department of 
Health and Human Services COVID-19 Dashboard 
2020 

Indiana United States - Indiana COVID-19 Statewide Test, 
Case, and Death Trends 2020 

Washington United States - Washington State Department of 
Health COVID-19 Cases by County and CDC Event 
Date 2020; United States - Washington State 
Department of Health COVID-19 Deaths by 
County, Date, Age Group and Sex 2020 

New York City (as a subset of New York State) United States - New York City Department of 
Health and Mental Hygiene Coronavirus Disease 
2019 (COVID-19) Data 2020 
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SI Table 4. Ad hoc corrections made to the Johns Hopkins dataset 
A file containing SI Table 4 is hosted within the Global Health Data Exchange record (file name – 
IHME_USA_COVID_2020_2021_MANDATES_CLOSURES_REOPENING_Y2020M10D09.CSV) associated 
with this publication http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-
2020-2021 
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SI Table 5. Data sources by state for COVID-19-specific hospitalisations 
 

Location Data source 
United States of 
America, Alaska 

United States - Alaska Department of Public Health and Social Services 
Coronavirus Response Hub 2020 

United States of 
America 

The COVID Tracking Project 
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SI Table 6. Covariates summary table 
 Covariate 

Name 
Definition Covariate Coefficient 

(baseline model) 

Time 
varying 

Social 
distancing 
mandates 

Categorical classification of social distancing 
mandates imposition and lifting 

N/A 

Mobility Composite indicator of multiple mobility 
sources, expressed as percent reduction from 
"norm". Projected based on social distancing 
mandates 

9.45E-3 (95% UI: 
7.10E-3 to 1.21E-2) 

Testing per 
capita 

Number of tests administered daily divided by 
population per location 

-25.9 (-54.6 to -6.37) 

Mask Use Percentage of the population who "always" 
wear a mask 

-0.502 (-0.520 to -
0.380) 

Pneumonia 
seasonality 

Proportion of pneumonia deaths to total 
deaths by week of the calendar year; by 
location 

1.035 (0.90 to 1.31) 

Time 
invariant 

LRI mortality age 15+ age-standardised LRI mortality rate by 
location (time invariant, based on 2019 
results) 

5.89E-4 (0.0 to 4.65E-
3) 

Altitude Proportion population below 100 m altitude 1.38E-3 (0.0 to 8.97E-
3) 

Population 
density 

Percentage of population living in areas more 
dense than 1,000 ppl per square km 

2.5E-6 (0.0 to 4.6E-6) 

Smoking Smoking exposure per capita (time invariant) 
(Adult age-standardised [15+ years], both 
sexes) 

1.38E-2 (0.0 to 0.102) 

Air pollution Population-weighted annual mean PM2.5 
exposure 

2.00E-5 (0.0 to 1.38E-
4) 
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SI Table 7. Date of enactment, repeal, and source by state for social distancing mandates 
A file containing SI Table 7 is hosted within the Global Health Data Exchange record (file name – IHME_USA_COVID_2020_2021_RAW_DATA_CORRECTIONS_Y2020M10D09.CSV) associated with 
this publication http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-2020-2021 
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SI Table 8. Listing of source of testing data for locations not present within Our World in 
Data global dataset 

Location Source Tests reported 

Albania Albania Ministry of Health and Social Protection Updated 
Information on COVID-19 2020 

Individuals tested 

Angola Angola Ministry of Health COVID-19 News 2020 Tests processed  

Armenia Armenia National Center for Disease Control Coronavirus 
Disease (COVID-19) Confirmed Cases by Days 2020 

Cases + Negatives 

Australia Coronavirus (COVID-19) in Australia 2020 Tests processed 

Barbados Barbados Government Information Service COVID-19 Update 
2020 

Tests processed 

Benin Benin Coronavirus Information (COVID-19) 2020 Tests processed 

Botswana Botswana COVID-19 Updates 2020 Tests processed 

Canadian 
subnationals 

Canada Coronavirus Disease 2019 (COVID-19) Daily Epidemiology 
Update 2020 

Individuals tested 

Canadian 
subnationals 

Canada Public Health Infobase Number of Total Cases of COVID-
19 2020 

Individuals tested 

Comoros Comoros Ministry of Health, Solidarity, Social Protection and 
Gender Promotion COVID-19 Press Release 

Tests processed 

Congo Congo COVID-19 Epidemiological Situation 2020 Tests processed 

Costa Rica Costa Rica COVID-19 National Situation - Distance State 
University 2020 

Tests processed 

Cote d'Ivoire Cote d'Ivoire COVID-19: Update on the Situation of Coronavirus 
Disease 2020 

Tests processed 

Cyprus Cyprus Announcement of the Ministry of Health Regarding New 
Cases of COVID-19 Disease 2020 

Tests processed 

Djibouti Djibouti COVID-19 Statistics 2020 Tests processed 

Dominican 
Republic 

Dominican Republic General Directorate of Epidemiology 
Coronavirus Disease 2019 (COVID-19) Special Bulletin 2020 

Tests processed 

Democratic 
Republic of 
the Congo 

Democratic Republic of the Congo Multisectoral Committee on 
the Response to COVID-19 Bulletin 2020 

Tests processed 
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Location Source Tests reported 

Equatorial 
Guinea 

Equatorial Guinea COVID-19 News - AhoraEG Tests processed 

Eswatini Eswatini COVID-19 Dashboard 2020 Individuals tested 

Gabon Gabon COVID-19 Epidemiological Situation 2020 Tests processed 

Gambia Gambia COVID-19 Situational Outbreak Report 2020 Tests processed 

Ghana Ghana Health Service Coronavirus Disease (COVID-19) Updates 
2020 

Tests processed 

Guinea Guinea Ministry of Health COVID-19 Epidemiological Situation 
2020 

Individuals tested 

Guinea 
Bissau 

Guinea-Bissau INFOCOVID-19 Update 2020 Tests processed 

Guyana Guyana Ministry of Public Health COVID-19 Dashboard 2020 Individuals tested 

Honduras Honduras National Risk Management System COVID-19 
Statement 2020 

Tests processed 

Italian 
subnationals 

Italy COVID-19 Situation Monitoring - Department of Civil 
Protection 

Tests processed 

Japan Japan Coronavirus Disease (COVID-19) Situation Report 2020 - 
Toyo Kazei Online 

Tests processed 

Madagascar Madagascar Ministry of Public Health Coronavirus Situation 2020 Tests processed 

Mali Mali Ministry of Health and Social Affairs Communique on the 
Monitoring of Prevention and Response Actions to Coronavirus 
Disease 2020 

Tests processed 

Mauritania Mauritania COVID-19 Situation Report 2020 Tests processed 

Mauritius Mauritius Ministry of Health and Wellness COVID-19 Statistics 
2020 

Tests processed 

Mexico Mexico General Directorate of Epidemiology COVID-19 Database 
2020 

Individuals tested 

Moldova Moldova Epidemiological Situation Due to Infection with the 
New Type of Coronavirus (COVID-19) 2020 

Tests processed 

Mozambique Mozambique National Institute of Health COVID-19 Daily 
Surveillance Bulletin 2020 

Individuals tested 
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Location Source Tests reported 

Niger Niger Ministry of Public Health General Secretariat COVID-19 
Communications 2020 

Tests processed 

Pakistan - 
Sindh 

Pakistan - Sindh COVID-19 Statistics 2020 Tests processed 

Pakistan - 
Punjab 

Pakistan - Punjab COVID-19 Statistics 2020 Tests processed 

Pakistan - 
Khyber 
Pakhtunkhwa 

Pakistan - Khyber Pakhtunkhwa COVID-19 Statistics 2020 Tests processed 

Pakistan - 
Islamabad 

Pakistan - Islamabad COVID-19 Statistics 2020 Tests processed 

Pakistan - 
Gilgit-
Baltistan 

Pakistan - Gilgit-Baltistan COVID-19 Statistics 2020 Tests processed 

Pakistan - 
Balochistan 

Pakistan - Balochistan COVID-19 Statistics 2020 Tests processed 

Pakistan - 
Azad Jammu 
and Kashmir 

Pakistan - Azad Jammu and Kashmir COVID-19 Statistics 2020 Tests processed 

Brazil - 
Pernambuco 

COVID-19 in the World, in Brazil and in Pernambuco 2020 Tests processed 

Peru Peru Ministry of Health COVID-19 Situation 2020 Individuals tested 

Saint Kitts Saint Kitts and Nevis COVID-19 Situation Report 2020 Positives + 
Negatives 

Brazil - Santa 
Catarina 

Brazil - Santa Catarina Coronavirus Epidemiological Bulletin 2020 Tests processed 

Brazil - 
Sergipe 

Brazil - Sergipe Epidemiological Bulletin for Update on 
Coronavirus Disease 2019 (Covid-19) 2020 

Tests processed 

Sierra Leone Sierra Leone Coronavirus Disease (COVID-19) Situational Report, 
April-May 2020 

Tests processed 

South Africa 
subnationals 

South Africa National Institute for Communicable Diseases 
COVID-19 Weekly Epidemiological Brief 2020 

Tests processed 
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Location Source Tests reported 

Spain - 
Aragon 

Spain - Aragon Open Data: Daily Facts and Figures About the 
Coronavirus 2020 

Tests processed 

Spain - 
Cantabria 

Spain - Cantabria Epidemiological Situation of COVID-19 2020 Total PCR tests 

Spain - 
Navarra 

Spain - Navarra COVID-19 Tests Results Data 2020 Total PCR + 
Antibody Tests 

Spain - 
Navarra 

Spain - Navarra New COVID-19 Series Evolution Data 2020 Total PCR + 
Antibody Tests 

Spain - 
Castile y 
Leon 

Spain - Castile and León Open Data: Coronavirus Tests 2020 Total PCR tests 

Spain Spain Ministry of Health, Consumption, and Social Welfare 
Coronavirus Disease (COVID-19) Current Situation Update 2020 

Total PCR tests 

Togo Coronavirus in Togo: Evolution in Graphics 2020 Tests processed 

United States 
of America 
States (apart 
from 
Washington) 

United States COVID Tracking Project API - Historic State Data 
2020 

Various 

Washington United States - Washington State Department of Health COVID-
19 Tests by County and Specimen Collection Date 2020 

Tests processed 

Yemen Yemen Covid-19 Daily Report for the Period from January to June 
2020 

Tests processed 

Spain - La 
Rioja 

Spain - La Rioja Epidemiological Situation of COVID-19 2020 Tests processed 

Spain - 
Balearic 
Islands 

Spain - Balearic Islands Ministry of Health and Consumption 
News About the Coronavirus COVID-19 2020 

Tests processed 

Spain - 
Asturias 

Spain - Asturias Open Data: COVID-19 Evolution 2020 Tests processed 

Georgia Georgia National Center for Disease Control and Public Health 
COVID-19 Update 2020 

Tests processed 

Malawi Malawi COVID-19 National Information Dashboard 2020 Tests processed 
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Location Source Tests reported 

Cape Verde Cape Verde COVID-19 Epidemiological Bulletin 2020 Tests processed 

Namibia Namibia COVID-19 National Statistics 2020 Individuals tested 

Sudan Sudan Health Observatory COVID-19 Situation and Updates 2020 Tests processed 

Central 
African 
Republic 

Central African Republic COVID-19 Daily Situation Report 2020 Individuals tested 

Philippines Philippines Department of Health COVID-19 Tracker 2020 Tests processed 

Niger Niger Ministry of Public Health General Secretariat COVID-19 
Communications 2020 

Tests processed 

Brail - Minas 
Gerais 

Brazil - Minas Gerais Coronavirus Epidemiological Bulletin 2020 Tests processed in 
public facilities 

Brail - 
Rondonia 

Brazil - Rondonia Daily Newsletter on Coronavirus 2020 Tests processed 

Jamaica Jamaica Ministry of Health and Wellness COVID-19 Update 2020 Tests processed 

Jordan Jordan Ministry of Health COVID-19 Updates 2020 Tests processed 

Zambia Zambia Coronavirus Disease (COVID-19) Outbreak Situation 
Report 2020 

Tests processed 

Indian 
subnationals 

India COVID-19 Crowdsourced Patient Database: State Level 
Testing Data 2020 

Various 

Palestine Palestine Ministry of Health COVID-19 Surveillance System 2020 Tests processed 

Bermuda Bermuda COVID-19 Update 2020 Tests processed 

Lebanon Lebanon Ministry of Public Health COVID-19 Surveillance Data 
2020 

Tests processed 

Oman Oman Ministry of Health COVID-19 Statement 2020 Tests processed 

Guatemala Guatemala Ministry of Public Health and Social Assistance 
COVID-19 Case Update 2020 

Tests processed 

Palau Palau Ministry of Health Coronavirus Disease 2019 (COVID-19) 
Situation Report 2020 

Tests processed 
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SI Table 9. Infection fatality ratio data sources 
Location Date Source 
Belgium 13th June 2020 Sereina et al. 2020 “Seroprevalence of IgG antibodies 

against SARS coronavirus 2 in Belgium: a serial prospective 
cross-sectional nationwide study of residual samples” 
medRxiv 
https://www.medrxiv.org/content/10.1101/2020.06.08.201
25179v3  

Belgium 4th July 2020 Sereina et al. 2020 “Seroprevalence of IgG antibodies 
against SARS coronavirus 2 in Belgium: a serial prospective 
cross-sectional nationwide study of residual samples” 
medRxiv 
https://www.medrxiv.org/content/10.1101/2020.06.08.201
25179v3  

Denmark 17th April 2020 Erikstrup et al. 2020 “Estimation of SARS-CoV-2 infection 
fatality rate by real-tme antibody screening of blood 
donors” medRxiv 
https://www.medrxiv.org/content/10.1101/2020.04.24.200
75291v1.full.pdf  

Spain 11th May 2020 Estudio ENE-COVID19 Segunda Ronda 
https://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHE
ROS/INFORME_SEGUNDA_RONDA.pdf  

Spain 1st June 2020 Estudio ENE-COVID19 Segunda Ronda 
https://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHE
ROS/INFORME_SEGUNDA_RONDA.pdf 

Spain 22nd June 2020 Estudio ENE-COVID19 Informe Final 
https://portalcne.isciii.es/enecovid19/informes/informe_fin
al.pdf  

Sweden 2nd May 2020 Folkhalsomyndigheten “Pavisning av antikroppar efter 
genomgangen covid-19 hos blodgivare (Delrapport 2)” 
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/  

Sweden 9th May 2020 Folkhalsomyndigheten “Pavisning av antikroppar efter 
genomgangen covid-19 hos blodgivare (Delrapport 2)” 
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/ 

Sweden 16th May 2020 Folkhalsomyndigheten “Pavisning av antikroppar efter 
genomgangen covid-19 hos blodgivare (Delrapport 2)” 
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/ 
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Sweden 23rd May 2020 Folkhalsomyndigheten “Pavisning av antikroppar efter 
genomgangen covid-19 hos blodgivare (Delrapport 2)” 
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/ 

Brazil 21st May 2020 Hallal et al. 2020 “Remarkable variability in SARS-CoV-2 
antibodies across Brazilian regions: nationwide serological 
household survey in 27 states” medRxiv 
https://www.medrxiv.org/content/10.1101/2020.05.30.201
17531v1.full.pdf  

Kenya 16th June 2020 Uyoga et al. 2020 “Seroprevalence of anti-SARS-CoV-2 IgG 
antibodies in Kenyan blood donors” medRxiv 
https://www.medrxiv.org/content/10.1101/2020.07.27.201
62693v1  

Nigeria 30th June 2020 Majiya et al. 2020 “Seroprevalence of COVID-19 in Niger 
State” medRxiv 
https://www.medrxiv.org/content/10.1101/2020.08.04.201
68112v1  

California, 
United States 

27th April Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00  

Connecticut, 
United States 

3rd May 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 

Connecticut, 
United States 

26th May 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance  

Connecticut, 
United States 

17th June 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Florida, United 
States 

10th April 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 
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Florida, United 
States 

24th April 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Louisiana, 
United States 

8th April 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 

Minnesota, 
United States 

12th May 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 

Minnesota, 
United States 

7th June 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Minnesota, 
United States 

27th June 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Missouri, 
United States 

26th April 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 

Missouri, 
United States 

30th March 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Missouri, 
United States 

20th June 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

New York, 
United States 

1st April 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 

New York, 
United States 

28th April 2020 Rosenberg et al. 2020 “Cumulative incidence and diagnosis 
of SARS-CoV-2 Infection in New York medRxiv 
https://www.medrxiv.org/content/10.1101/2020.05.25.201
13050v1.full.pdf  
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New York, 
United States 

6th May 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

New York, 
United States 

21st June 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Pennsylvania, 
United States 

25th April 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 

Pennsylvania, 
United States 

30th May 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Pennsylvania, 
United States 

20th June 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Utah, United 
States 

3rd May 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 

Utah, United 
States 

5th June 2020 US Centers for Disease Control “Commerical Laboratory 
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance 

Washington, 
United States 

1st April 2020 Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 – May 12 
2020” JAMA Intern Med. 
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00 
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SI Table 10. Mortality rate estimation data sources 
Location Date Source 
China 11th February 2020 “The Epidemiological Characteristics of an 

Outbreak of 2019 Novel Coronavirus Diseases 
(COVID-19) - China 2020” 
http://weekly.chinacdc.cn/en/article/id/e53946e2
-c6c4-41e9-9a9b-fea8db1a8f51  

Indonesia 17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran   

Philippines 19th August 2020 Philippines Department of Health 
https://www.doh.gov.ph/2019-nCoV  

Japan 8th May 2020 Ministry of Health, Labour and Welfare 
https://www.mhlw.go.jp/stf/houdou/houdou_list
_202005.html  

Republic of 
Korea 

18th August 2020 KDCA 
https://www.cdc.go.kr/board/board.es?mid=a304
02000000&bid=0030  

Singapore 6th May 2020 Ministry of Health https://www.moh.gov.sg/news-
highlights  

Australia 18th August 2020 Department of Health 
https://www.health.gov.au/news/health-
alerts/novel-coronavirus-2019-ncov-health-alert  

New Zealand 19th August 2020 Ministry of Health 
https://www.health.govt.nz/our-work/diseases-
and-conditions/covid-19-novel-coronavirus/covid-
19-current-situation/covid-19-current-cases  

Belgium 19th August 2020 Sciensano https://epistat.wiv-isp.be/covid/  
Denmark 18th August 2020 Statens Serum Institut 

https://www.ssi.dk/sygdomme-beredskab-og-
forskning/sygdomsovervaagning/c/covid19-
overvaagning  

France 19th August 2020 Sante Publique France 
https://geodes.santepubliquefrance.fr/#c=indicat
or&f=0&i=covid_hospit.dc&s=2020-03-
26&t=a01&view=map2  

Germany 19th August 2020 Robert Koch Institut 
https://www.rki.de/DE/Content/InfAZ/N/Neuartig
es_Coronavirus/Situationsberichte/Gesamt.html  

Greece 19th August 2020 EODY Greece https://eody.gov.gr/neos-koronaios-
covid-19/  

Iceland 18th June 2020 Directorate of Health https://www.covid.is/data  
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Ireland 19th August 2020 Health Protection Surveillance Centre 
https://www.hpsc.ie/a-
z/respiratory/coronavirus/novelcoronavirus/casesi
nireland/epidemiologyofcovid-19inireland/  

Italy 11th August 2020 Istituto Superiore do Sanita 
https://www.epicentro.iss.it/coronavirus/aggiorna
menti  

Netherlands 19th August 2020 RIVM https://www.rivm.nl/coronavirus-covid-
19/grafieken  

Norway 19th August 2020 NIPH https://www.fhi.no/en/id/infectious-
diseases/coronavirus/daily-reports/daily-reports-
COVID19/  

Portugal 11th August 2020 Direcao-Geral de Saude https://covid19.min-
saude.pt/  

Spain 13th August 2020 ISCII 
https://www.isciii.es/QueHacemos/Servicios/Vigil
anciaSaludPublicaRENAVE/EnfermedadesTransmis
ibles/Paginas/InformesCOVID-19.aspx  

Sweden 19th August 2020 Folkhalsomyndigheten 
https://www.folkhalsomyndigheten.se/smittskydd
-beredskap/utbrott/aktuella-utbrott/covid-
19/statistik-och-analyser/bekraftade-fall-i-sverige/  

Switzerland 11th August 2020 Federal Office of Public Health 
https://www.bag.admin.ch/bag/en/home/krankh
eiten/ausbrueche-epidemien-
pandemien/aktuelle-ausbrueche-
epidemien/novel-cov/situation-schweiz-und-
international.html  

United 
Kingdom 

7th August 2020 Office for National Statistics 
https://www.ons.gov.uk/peoplepopulationandco
mmunity/birthsdeathsandmarriages/deaths/datas
ets/weeklyprovisionalfiguresondeathsregisteredin
englandandwales  

Argentina 28th July 2020 Ministerio de Salud 
https://www.argentina.gob.ar/salud/coronavirus-
COVID-19  

Chile 29th July 2020 MINSA https://www.minsal.cl/nuevo-coronavirus-
2019-ncov/casos-confirmados-en-chile-covid-19/  

Canada 19th August 2020 Government of Canada https://health-
infobase.canada.ca/covid-19/epidemiological-
summary-covid-19-cases.html  
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United States 
of America 

24th June 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm  

Haiti 17th August 2020 Ministere de la Sante Publique et de la Population 
https://www.mspp.gouv.ht/documentation/  

Ecuador 3rd May 2020 Ministerio de Salud Publica 
https://www.salud.gob.ec/boletines-
epidemiologicos-coronavirus-por-semanas/  

Peru 11th August 2020 MINSA - 
https://www.dge.gob.pe/portalnuevo/covid-
19/covid-cajas/situacion-del-covid-19-en-el-peru/  

Colombia 14th August 2020 Instituto Nacional de Salud 
https://www.ins.gov.co/Paginas/Boletines-casos-
COVID-19-Colombia.aspx#InplviewHash5872a312-
02d0-4090-aa8a-7716dd9fc4df=Paged%3DTRUE-
p_SortBehavior%3D0-
p_FileLeafRef%3D2020%252d06%252d11%252exl
sx-p_ID%3D116-PageFirstRow%3D91  

Costa Rica 18th August 2020 Observatorio Geografico en Salud 
http://geovision.uned.ac.cr/oges/index.html#desc
argas  

Guatemala 18th August 2020 MSPAS https://tablerocovid.mspas.gob.gt/  
Mexico 19th August 2020 Gobierno de Mexico 

https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral  

Iraq 19th August 2020 World Health Organization 
https://app.powerbi.com/view?r=eyJrIjoiNjljMDhi
YmItZTlhMS00MDlhLTg3MjItMDNmM2FhNzE5Nm
M4IiwidCI6ImY2MTBjMGI3LWJkMjQtNGIzOS04MT
BiLTNkYzI4MGFmYjU5MCIsImMiOjh9  

Lebanon 18th August 2020 MOPH - 
https://www.moph.gov.lb/ar/Pages/2/24870/%D9
%81%D9%8A%D8%B1%D9%88%D8%B3-
%D8%A7%D9%84%D8%AA%D8%A7%D8%AC%D9
%8A-
%D8%A7%D9%84%D9%85%D8%B3%D8%AA%D8%
AC%D8%AF-2019  

Afghanistan 18th August 2020 Ministry of Public Health http://covid.moph-
dw.org/#/  

Bangladesh 19th August 2020 IEDCR https://covid19bd.idare.io/  
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Republic of the 
Congo 

28th July 2020 Ministere de la Sante, de la Population, de la 
Promotion de la Femme et de l’Integration de la 
Femme au Developpement http://sante.gouv.cg/  

Kenya 27th July 2020 Ministry of Health 
https://www.health.go.ke/#1591180376422-
52af4c1e-256b  

Somalia 12th August 2020 WHO Somalia 
https://bmgf.maps.arcgis.com/apps/opsdashboar
d/index.html#/d0d9a939c5fa401caa3a7447e72b2
017  

South Africa 1st July 2020 Department of Health 
https://sacoronavirus.co.za/  

Eswatini 19th August 2020 Wits University 
https://datastudio.google.com/embed/u/0/report
ing/b847a713-0793-40ce-8196-
e37d1cc9d720/page/2a0LB  

Togo 19th August 2020 Gouvernement Togo 
https://covid19.gouv.tg/graph-evolution/  

Gauteng, South 
Africa 

23rd July 2020 Gauteng Health 
https://twitter.com/gautenghealth?lang=en  

Western Cape, 
South Africa 

19th August 2020 Western Cape Government 
https://coronavirus.westerncape.gov.za/covid-19-
dashboard  

Alabama, 
United States 

18th August 2020 Alabama Public Health 
https://alpublichealth.maps.arcgis.com/apps/opsd
ashboard/index.html#/6d2771faa9da4a2786a509
d82c8cf0f7  

Alaska, United 
States 

18th August 2020 Alaska Department of Health and Social Services 
https://coronavirus-response-alaska-
dhss.hub.arcgis.com  

Arizona, United 
States 

25th August 2020 Arizona Department of Health Services 
https://www.azdhs.gov/preparedness/epidemiolo
gy-disease-control/infectious-disease-
epidemiology/covid-19/dashboards/index.php  

Arkansas, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

California, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Colorado, 
United States 

19th August 2020 Colorado Department of Health 
https://drive.google.com/drive/folders/1bBAC7H-
pdEDgPxRuU_eR36ghzc0HWNf1  
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Connecticut, 
United States 

17th August 2020 Ct Data https://data.ct.gov/Health-and-Human-
Services/COVID-19-Cases-and-Deaths-by-Age-
Group/ypz6-8qyf  

Delaware, 
United States 

24th August 2020 Delaware Environmental Public Health Tracking 
Network 
https://myhealthycommunity.dhss.delaware.gov/l
ocations/state  

District of 
Columbia, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Florida, United 
States 

17th August 2020 Florida Division of Disaster Management 
https://www.floridadisaster.org/covid19/covid-
19-data-reports/  

Georgia, United 
States 

25th August 2020 Georgia Department of Public Health 
https://dph.georgia.gov/covid-19-daily-status-
report  

Idaho, United 
States 

17th August 2020 Idaho Department of Health and Welfare 
https://public.tableau.com/profile/idaho.division.
of.public.health#!/vizhome/DPHIdahoCOVID-
19Dashboard/Home  

Illinois, United 
States 

25th August 2020 Illinois Department of Public Health 
http://www.dph.illinois.gov/covid19/covid19-
statistics  

Indiana, United 
States 

17th August 2020 Indiana COVID-19 Data Report 
https://www.coronavirus.in.gov/2393.htm  

Iowa, United 
States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Kansas, United 
States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Kentucky, 
United States 

24th July 2020 Kentucky Department of Public Health 
https://kygeonet.maps.arcgis.com/apps/opsdashb
oard/index.html#/543ac64bc40445918cf8bc34dc4
0e334  

Louisiana, 
United States 

18th August 2020 Louisiana Department of Health 
https://ldh.la.gov/Coronavirus/  

Maine, United 
States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Maryland, 
United States 

18th August 2020 Maryland Department of Health 
https://coronavirus.maryland.gov/  
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Massachusetts, 
United States 

11th August 2020 Government of Massachusetts 
https://www.mass.gov/info-details/covid-19-
response-reporting  

Michigan, 
United States 

17th August 2020 Michigan Department of Health and Human 
Services 
https://www.michigan.gov/coronavirus/0,9753,7-
406-98163_98173---,00.html  

Minnesota, 
United States 

8th August 2020 Department of Health 
https://www.health.state.mn.us/diseases/corona
virus/stats/index.html  

Mississippi, 
United States 

17th August 2020 Mississippi State Department of Health 
https://msdh.ms.gov/msdhsite/_static/14,0,420.h
tml  

Missouri, 
United States 

25th August 2020 Missouri Department of Health 
https://showmestrong.mo.gov/data/public-
health/  

Nebraska, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Nevada, United 
States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

New 
Hampshire, 
United States 

18th August 2020 New Hampshire Department of Health and Human 
Services https://www.nh.gov/covid19/  

New Jersey, 
United States 

30th July 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

New Mexico, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

New York, 
United States 

17th August 2020 New York State Department of Health 
https://covid19tracker.health.ny.gov/views/NYS-
COVID19-Tracker/NYSDOHCOVID-19Tracker-
Map?%3Aembed=yes&%3Atoolbar=no&%3Atabs=
n  

North Carolina, 
United States 

18th August 2020 North Carolina Department of Health and Human 
Services https://covid19.ncdhhs.gov/dashboard  

North Dakota, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 
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Ohio, United 
States 

24th August 2020 Ohio Department of Health 
https://coronavirus.ohio.gov/wps/portal/gov/covi
d-19/dashboards  

Oklahoma, 
United States 

17th August 2020 Oklahoma State Department of Health 
https://coronavirus.health.ok.gov/  

Oregon, United 
States 

18th August 2020 Oregon Health Authority 
https://govstatus.egov.com/OR-OHA-COVID-19  

Pennsylvania, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Rhode Island, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

South Carolina, 
United States 

18th August 2020 South Carolina Department of Health and 
Environmental Control 
https://scdhec.gov/infectious-
diseases/viruses/coronavirus-disease-2019-covid-
19/south-carolina-county-level-data-covid-19  

South Dakota, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Tennessee, 
United States 

18th August 2020 Department of Health 
https://www.tn.gov/content/tn/health/cedep/nco
v/data.html  

Texas, United 
States 

17th August 2020 Deaprtmetn of State Health Services 
https://www.dshs.texas.gov/coronavirus/  

Utah, United 
States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Vermont, 
United States 

25th August 2020 Health Vermont 
https://www.healthvermont.gov/response/coron
avirus-covid-19/current-activity-vermont  

Virginia, United 
States 

18th August 2020 Virginia Open Data Portal 
https://data.virginia.gov/browse  

Washington, 
United States 

18th August 2020 Washington State Department of Health 
https://www.doh.wa.gov/Emergencies/COVID19#
CovidDataTables  

West Virginia, 
United States 

8th August 2020 National Center for Health Statistics 
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekl
y/index.htm 

Wisconsin, 
United States 

11th August 2020 Wisconsin Department of Health Services 
https://www.dhs.wisconsin.gov/outbreaks/index.
htm  
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Aguascalientes, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Baja California, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Baja California 
Sur, Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Campeche, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Coahuila, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Colima, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Chiapas, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Chihuahua, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Mexico City, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
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epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Durango, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Guanajuato, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Guerrero, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Hidalgo, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Jalisco, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Mexico, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Michoacan de 
Ocampo, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Morelos, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 
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Nayarit, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Nuevo Leon, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Oaxaca, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Puebla, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Queretaro, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Quintana Roo, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

San Luis Potosi, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Sinaloa, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Sonora, Mexico 19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
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epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 
 

Tabasco, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Tamaulipas, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Tlaxcala, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Veracruz de 
Ignacio de al 
Llave, Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Yucatan, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

Zacatecas, 
Mexico 

19th August 2020 Gobierno de Mexico 
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral 

North Sumatra, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

South Sumatra, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

Jakarta, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 
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West Java, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

Central Java, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

East Java, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

Banten, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

West Nusa 
Tenggara, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

Central 
Kalimantan, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

South 
Kalimantan, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

East 
Kalimantan, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

North Sulawesi, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

South Sulawesi, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

North Maluku, 
Indonesia 

17th August 2020 Komite Penanganan COVID-19 Dan Pemulihan 
Ekonomi Nasional https://covid19.go.id/peta-
sebaran 

Alagoas, Brazil 26th July 2020 Government of State of Alagoas 
http://www.alagoascontraocoronavirus.al.gov.br/  

Amazonas, 
Brazil 

8th July 2020 FVS Amazonas 
http://www.fvs.am.gov.br/publicacoes  

Amapa, Brazil 5th August 2020 Governo do Estado 
http://painel.corona.ap.gov.br/  

Ceara, Brazil 13th August 2020 Department of Health 
https://coronavirus.ceara.gov.br/boletins/  

Paraiba, Brazil 19th August 2020 Department of Health 
https://superset.plataformatarget.com.br/superse
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t/explore_json/?form_data=%7B%22slice_id%22%
3A1549%7D&csv=true 
 

Parana, Brazil 12th August 2020 Governo do Estado https://www.saude.pr.gov.br/  
Pernambuco, 
Brazil 

26th July 2020 Open Data 
https://dados.seplag.pe.gov.br/apps/corona_dado
s.html  

Santa Catarina, 
Brazil 

26th July 2020 Government of Santa Catarina 
http://www.coronavirus.sc.gov.br/category/boleti
ns/  

Sergipe, Brazil 19th August 2020 Ministry of Health 
https://todoscontraocorona.net.br/  

Delhi, India 20th May 2020 Government of Delhi  
http://health.delhigovt.nic.in/wps/wcm/connect/
doit_health/Health/Home/Covid19/  

Jharkhand, 
India 

8th June 2020 DD News Jharkhand 
https://twitter.com/rnuddkranchi/status/1314231
773610430464 

Karnataka, 
India 

5th August 2020 Department of Health and Family Welfare 
https://drive.google.com/file/d/1jfRJOMdvPRBl5w
gZh1LElMvaofNAxJGY/view  

Tamil Nadu, 
India 

27th July 2020 Health and Family Welfare Department 
https://twitter.com/ANI/status/13141831025335
70560 

La Rioja, Spain 17th August 2020 Gobierno de La Rioja 
https://actualidad.larioja.org/coronavirus/datos 
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SI Table 11. 𝛽 regression coefficient constraints 
 

Covariate Time-varying Lower Bound Upper Bound 

Pneumonia Seasonality Yes 0.9 1.31 

Mobility Yes 0 ∞ 

Mask Use Yes -0.52 0 

Testing Yes -80 0 

Air Quality No 0 ∞ 

Smoking Prevalence No 0 1 

LRI Mortality No 0 ∞ 

Altitude No 0 ∞ 

Population Density No 0 ∞ 
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SI Table 12 Cumulative deaths 21 September 2020 through 28 February 2021, maximum estimated daily deaths per million population, date of maximum daily 
deaths, and estimated Reffective on 28 February 2021 for two additional derivative scenarios. 

 

 less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million) 

"Masks only" (95% of population wears masks, SDM are removed and 
not reinstated) 

Location Cumulative deaths through 
28 February 2021 

Maximum 
estimated daily 

deaths per million  

Date of maximum 
daily deaths 

Estimated Reffective 
on 28 February 

2021 

Cumulative deaths 
through 28 

February 2021 

Maximum 
estimated daily 

deaths per million  

Date of maximum 
daily deaths 

Estimated Reffective 
on 28 February 

2021 

United States 
of America 

415559 (377160-451197) 6.3 (4.7-7.6) 1/26/21 NA 
490437 

(379492-
665753) 

14.9 (8.3-27) 2/28/21 NA 

California 53900 (42694-68160) 10.9 (6-15.1) 1/19/21 0.86 (0.81-0.91) 
65335 (38380-

122247) 
27.3 (11.1-61.8) 2/28/21 0.95 (0.82-1.1) 

Florida 28981 (23397-31802) 6.2 (0.8-10.9) 12/19/20 0.87 (0.66-1.07) 
42096 (26825-

65821) 
16.8 (7.6-33.1) 2/26/21 0.91 (0.83-1.02) 

New York 41540 (35559-48724) 5.6 (1.9-13.1) 2/18/21 0.86 (0.63-1.16) 
41748 (34836-

71491) 
10.2 (1.5-42.9) 2/28/21 1.04 (0.85-1.21) 

Pennsylvania 19430 (16909-22990) 8.8 (3.6-15.4) 12/31/20 0.9 (0.76-1.07) 
37589 (17752-

78473) 
40 (13-86.8) 2/21/21 0.86 (0.65-1.02) 

Texas 35414 (27254-40056) 7.3 (2.8-12.4) 1/28/21 0.72 (0.6-1.02) 
35234 (24421-

53967) 
10.9 (4-22.4) 2/28/21 0.95 (0.84-1.09) 

Illinois 16544 (13376-18728) 6.7 (3.1-11.1) 2/8/21 0.76 (0.61-1.03) 
15364 (12085-

22725) 
8.4 (3.2-22.3) 2/28/21 0.98 (0.9-1.09) 

New Jersey 22833 (19359-25729) 9.2 (2.2-17.6) 1/12/21 0.82 (0.66-1) 
29090 (18368-

45890) 
25.5 (4.6-57.8) 2/17/21 0.84 (0.6-1.09) 

Massachusetts 13782 (11657-14873) 8.8 (3.3-15.7) 2/2/21 0.74 (0.64-0.94) 
14295 (10886-

22980) 
20.6 (4.6-69.9) 2/28/21 1.07 (0.95-1.25) 
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 less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million) 

"Masks only" (95% of population wears masks, SDM are removed and 
not reinstated) 

Location Cumulative deaths through 
28 February 2021 

Maximum 
estimated daily 

deaths per million  

Date of maximum 
daily deaths 

Estimated Reffective 
on 28 February 

2021 

Cumulative deaths 
through 28 

February 2021 

Maximum 
estimated daily 

deaths per million  

Date of maximum 
daily deaths 

Estimated Reffective 
on 28 February 

2021 

Michigan 12192 (9380-14492) 5.7 (1.5-11.9) 2/11/21 0.82 (0.59-1.1) 
11974 (8798-

22436) 
9.4 (2.1-34.7) 2/28/21 1.02 (0.91-1.16) 

North Carolina 12557 (9901-14941) 9.3 (4.6-14) 1/17/21 0.84 (0.75-0.96) 
15217 (8140-

28550) 
21.1 (8-43.8) 2/28/21 0.93 (0.8-1.08) 

Ohio 10500 (7225-13383) 6.7 (2.6-11.1) 2/21/21 0.84 (0.66-1.06) 
9071 (6834-

12840) 
6 (2-15) 2/28/21 0.99 (0.91-1.11) 

Georgia 14505 (11001-17038) 6 (2.8-10.9) 10/25/20 0.82 (0.64-1.02) 
14994 (10683-

22756) 
8.3 (2.5-19) 2/28/21 0.94 (0.83-1.04) 

Missouri 6493 (4601-8350) 7.9 (2.4-16.6) 10/27/20 0.92 (0.67-1.14) 
13391 (5947-

27818) 
22.7 (7.3-48.2) 2/15/21 0.87 (0.69-1.01) 

Indiana 7044 (5236-8395) 6.3 (2.7-11.2) 2/12/21 0.8 (0.6-1.05) 
6353 (4823-

9505) 
6.9 (2.2-17.9) 2/28/21 0.98 (0.9-1.09) 

Connecticut 6598 (5081-8190) 8.1 (1.9-16) 2/3/21 0.82 (0.65-1.12) 
7666 (4869-

19376) 
26.6 (2.4-108.5) 2/28/21 1.05 (0.77-1.26) 

Arizona 10769 (8350-12204) 6.9 (2.8-14) 10/26/20 0.85 (0.63-1.17) 
12677 (9092-

18126) 
11.6 (5-21.9) 2/24/21 0.88 (0.73-1.02) 

Colorado 5761 (3794-7460) 8.8 (2.9-16.4) 1/26/21 0.79 (0.66-1) 
8013 (3357-

19496) 
25.7 (5.8-67.4) 2/28/21 0.92 (0.68-1.11) 

Maryland 7906 (6588-9003) 8.5 (4.7-13.9) 1/30/21 0.75 (0.64-0.93) 
8410 (5895-

15574) 
16.2 (5.5-44.4) 2/28/21 0.96 (0.83-1.08) 

Minnesota 5079 (3499-6098) 6.5 (2.1-12) 2/6/21 0.74 (0.56-1.02) 
4848 (3166-

8773) 
9.1 (2.5-27.3) 2/28/21 0.97 (0.89-1.08) 

Virginia 10904 (7491-17325) 7.7 (2.2-18.1) 10/30/20 0.91 (0.73-1.1) 
21863 (8446-

46746) 
28.7 (7.9-64.5) 2/17/21 0.87 (0.66-1.02) 
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Alabama 6049 (4240-7305) 6.3 (0.9-10.7) 1/27/21 0.83 (0.69-1) 
6053 (3757-

11137) 
7.9 (2.1-19.1) 2/26/21 0.91 (0.81-1.01) 

South Carolina 6580 (4906-8074) 5.7 (0.8-9.9) 2/17/21 0.85 (0.64-1.04) 
6075 (4644-

8213) 
5.5 (1.6-12.1) 2/28/21 0.95 (0.88-1.05) 

Tennessee 6060 (3190-8053) 5.9 (1-11.1) 2/8/21 0.83 (0.67-1.05) 
5519 (3028-

9374) 
6.7 (0.8-17.7) 2/28/21 0.95 (0.86-1.06) 

Louisiana 7997 (6447-9537) 6.3 (1.9-10.5) 2/19/21 0.84 (0.67-1.06) 
7460 (6276-

9338) 
5.6 (1.4-12.9) 2/28/21 0.96 (0.87-1.07) 

Nevada 3825 (2650-4632) 7.8 (2.9-13.5) 2/6/21 0.78 (0.66-1.08) 
3843 (2397-

7095) 
13.3 (3.7-35) 2/28/21 1 (0.88-1.15) 

Kansas 2443 (960-3654) 7.3 (0.7-14.4) 1/18/21 0.85 (0.68-1.05) 3222 (904-8955) 18.1 (0.8-61.3) 2/28/21 0.94 (0.79-1.1) 

New Mexico 2689 (2224-3270) 9.8 (4.9-14.6) 1/20/21 0.83 (0.74-0.96) 
3489 (1923-

7809) 
27.1 (9.3-71.2) 2/28/21 0.95 (0.79-1.1) 

Wisconsin 2953 (1817-4880) 4.6 (1.2-10.8) 2/28/21 0.93 (0.62-1.11) 
2484 (1769-

3938) 
3.3 (0.9-10) 2/28/21 0.99 (0.91-1.13) 

Arkansas 3215 (2162-4138) 6.7 (2-13.2) 10/25/20 0.88 (0.64-1.07) 
4073 (2017-

7847) 
10 (1.8-25.5) 2/28/21 0.94 (0.87-1.04) 

Oklahoma 3649 (2538-4356) 6.3 (1.4-11.4) 1/18/21 0.77 (0.59-0.99) 
3949 (2186-

8115) 
9.7 (3.1-24.5) 2/28/21 0.91 (0.8-1.02) 

Washington 4340 (3080-5902) 4.6 (1.8-7.6) 2/17/21 0.96 (0.89-1.06) 
4081 (2809-

7034) 
6 (1.3-18.7) 2/28/21 0.95 (0.9-1.04) 

Kentucky 2804 (1577-4225) 5.1 (0.8-11) 2/20/21 0.87 (0.62-1.08) 
2396 (1507-

4106) 
4.6 (0.7-14.4) 2/28/21 0.97 (0.89-1.1) 

Mississippi 5019 (4120-5915) 8.1 (3.5-17.7) 10/21/20 0.89 (0.67-1.02) 
5503 (4109-

8215) 
8.2 (3.5-17.5) 10/22/20 0.91 (0.83-1) 



  

 

90 
 

 less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million) 

"Masks only" (95% of population wears masks, SDM are removed and 
not reinstated) 

Location Cumulative deaths through 
28 February 2021 

Maximum 
estimated daily 

deaths per million  

Date of maximum 
daily deaths 

Estimated Reffective 
on 28 February 

2021 

Cumulative deaths 
through 28 

February 2021 

Maximum 
estimated daily 

deaths per million  

Date of maximum 
daily deaths 

Estimated Reffective 
on 28 February 

2021 

Rhode Island 1976 (1890-2085) 8.6 (4.1-13.7) 12/26/20 0.92 (0.76-1.1) 
3368 (2064-

5864) 
43.2 (19.8-79.1) 2/27/21 0.87 (0.67-1.04) 

Nebraska 1529 (822-1986) 6.7 (1.7-12.6) 1/28/21 0.78 (0.63-1.01) 1520 (736-3416) 10.4 (1.6-35.6) 2/28/21 0.94 (0.87-1.05) 

West Virginia 1537 (727-2099) 6.8 (1.6-11.8) 2/6/21 0.86 (0.72-1.07) 1536 (654-3466) 11.3 (1.7-36.5) 2/28/21 1 (0.91-1.13) 

Iowa 2142 (1522-3661) 2.8 (1.3-5.3) 10/6/20 0.94 (0.67-1.04) 
1964 (1502-

3106) 
2.8 (1.3-5.1) 10/6/20 0.95 (0.9-1.04) 

Idaho 1289 (634-2029) 5.5 (0.8-11.6) 2/16/21 0.85 (0.65-1.08) 1224 (609-2787) 7.7 (0.7-27.7) 2/28/21 0.98 (0.88-1.12) 

North Dakota 724 (508-1122) 14.4 (5.2-30.4) 10/20/20 0.95 (0.7-1.09) 1546 (696-3004) 15.4 (5.2-33.5) 10/24/20 0.87 (0.77-0.96) 

Delaware 1302 (1118-1409) 7.7 (3.6-13.2) 1/9/21 0.78 (0.65-0.94) 
1474 (1001-

2404) 
13 (5.5-25.1) 2/25/21 0.9 (0.75-1.02) 

Montana 543 (267-1082) 4.2 (1.7-9.7) 10/6/20 0.95 (0.7-1.06) 510 (256-1175) 4.1 (1.7-9.1) 10/6/20 0.96 (0.9-1.05) 
Hawaii 576 (269-1121) 4.5 (0.8-10.6) 2/28/21 0.95 (0.72-1.13) 465 (253-923) 3.3 (0.6-11.3) 2/28/21 0.99 (0.88-1.15) 

South Dakota 487 (300-848) 3.2 (2.2-4.4) 10/1/20 0.92 (0.6-1.08) 422 (292-753) 3.2 (2.2-4.4) 10/1/20 0.97 (0.91-1.09) 

District of 
Columbia 

791 (685-1007) 5.7 (1.6-12.9) 2/28/21 0.98 (0.69-1.21) 731 (666-857) 3.4 (0.8-10) 2/28/21 1.08 (0.96-1.25) 

Oregon 701 (609-923) 0.7 (0.7-0.7) 9/22/20 1.03 (0.96-1.15) 666 (604-800) 0.7 (0.7-0.7) 9/22/20 1.02 (0.95-1.12) 
Utah 549 (476-827) 0.5 (0-2.9) 2/28/21 1.02 (0.95-1.15) 520 (474-663) 0.4 (0.4-0.4) 9/28/20 1.01 (0.94-1.13) 

Alaska 293 (68-815) 2.5 (0.1-13.3) 11/30/20 0.82 (0.6-0.96) 371 (67-1872) 3.8 (0.1-23.8) 1/21/21 0.81 (0.64-0.95) 
New 

Hampshire 
452 (441-480) 0.2 (0.2-0.2) 9/22/20 1 (0.94-1.09) 448 (441-463) 0.2 (0.2-0.2) 9/22/20 0.98 (0.92-1.07) 
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Maine 170 (146-237) 0.3 (0.3-0.3) 9/22/20 1.01 (0.93-1.12) 162 (145-205) 0.3 (0.3-0.3) 9/22/20 0.99 (0.9-1.1) 
Vermont 72 (63-102) 0.6 (0.1-3.2) 2/28/21 1.02 (0.79-1.36) 69 (63-89) 0.4 (0.1-1.9) 2/28/21 0.99 (0.76-1.34) 
Wyoming 70 (53-129) 0.7 (0.7-0.7) 9/22/20 0.93 (0.73-1.04) 65 (53-102) 0.7 (0.7-0.7) 9/22/20 0.92 (0.7-1.04) 

 


