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Abstract

A pandemic of a novel Coronavirus emerged in December of 2019 (COVID-19), causing devastating public health impact across the world. In the
absence of a safe and effective vaccine or antivirals, strategies for controlling and mitigating the burden of the pandemic are focused on non-
pharmaceutical interventions, such as social-distancing, contact-tracing, quarantine, isolation, and the use of face-masks in public. We develop a new
mathematical model for assessing the population-level impact of the aforementioned control and mitigation strategies. Rigorous analysis of the model
shows that the disease-free equilibrium is locally-asymptotically stable if a certain epidemiological threshold, known as the reproduction number
(denoted by £.), is less than unity. Simulations of the model, using data relevant to COVID-19 transmission dynamics in the US state of New York
and the entire US, show that the pandemic burden will peak in mid and late April, respectively. The worst-case scenario projections for cumulative
mortality (based on the baseline levels of anti-COVID non-pharmaceutical interventions considered in the study) decrease dramatically by 80% and
64%, respectively, if the strict social-distancing measures implemented are maintained until the end of May or June, 2020. The duration and timing of
the relaxation or termination of the strict social-distancing measures are crucially-important in determining the future trajectory of the COVID-19
pandemic. This study shows that early termination of the strict social-distancing measures could trigger a devastating second wave with burden similar
to those projected before the onset of the strict social-distancing measures were implemented. The use of efficacious face-masks (such as surgical
masks, with estimated efticacy > 70%) in public could lead to the elimination of the pandemic if at least 70% of the residents of New York state use
such masks in public consistently (nationwide, a compliance of at least 80% will be required using such masks). The use of low efficacy masks, such
as cloth masks (of estimated efficacy less than 30%), could also lead to significant reduction of COVID-19 burden (a/beit, they are not able to lead to
elimination). Combining low efficacy masks with improved levels of the other anti-COVID-19 intervention strategies can lead to the elimination of the
pandemic. This study emphasizes the important role social-distancing plays in curtailing the burden of COVID-19. Increases in the adherence level of
social-distancing protocols result in dramatic reduction of the burden of the pandemic, and the timely implementation of social-distancing measures in
numerous states of the US may have averted a catastrophic outcome with respect to the burden of COVID-19. Using face-masks in public (including
the low efficacy cloth masks) is very useful in minimizing community transmission and burden of COVID-19, provided their coverage level is high.

The masks coverage needed to eliminate COVID-19 decreases if the masks-based intervention is combined with the strict social-distancing strategy.
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1. Introduction

The world is currently facing a pandemic of a novel coronavirus (COVID-19), which started as an outbreak of pneumonia of unknown cause in Wuhan
city of China in December of 2019 [1], [2], [3]. As of April 14, 2020, COVID-19 (caused by the novel SARS-CoV-2 coronavirus) has spread to over
210 countries and territories, causing about 1.9 million infections and 125,000 deaths [4], [S], [6], [7]. The United States is now the epicenter of the
COVID-19 pandemic, (recording over 613,800 confirmed cases and 26,000 deaths) within a short time, with New York state bearing the brunt of the
US burden (over 203,000 confirmed cases and 10,800 deaths) [4], [5], [6], [7]. The first documented confirmed case of the novel coronavirus in the US
(a resident who had recently visited Wuhan city in China) was reported on January 20, 2020 [8], while the first confirmed case in the state of New
York was reported on March 1, 2020. Most of the COVID-19 related deaths and severe cases occur in the elderly (65 years of age and older) and

people with underlying medical conditions [9]. Younger people and frontline healthcare workers are also at high risk of acquiring COVID-19 infection.

As with two other coronaviruses that caused major outbreaks in humans in recent years (namely, the Severe Acute respiratory Syndrome and the
Middle Eastern Respiratory Syndrome [2], [10]), COVID-19 is transmitted from human-to-human through direct contact with contaminated objects or
surfaces and through inhalation of respiratory droplets from both symptomatic and asymptomatically-infectious humans [11]. There is also limited
evidence that the virus can be exhaled through normal breathing [12]. The incubation period of the disease ranges from 2-14 days [3], [13], [14], [15].
Most infections (over 80%) show mild or no symptoms [16]. Common symptoms of the disease include fever, coughing and shortness of breath for
mild cases, and pneumonia for severe cases [1], [2], [7]. In the absence of pharmaceutical interventions (such as a safe and effective vaccine for use in
humans and a COVID-19 anti-viral), efforts aimed at containing COVID-19 are focused on the implementation of non-pharmaceutical interventions,
such as social-distancing, using face-masks, quarantine of suspected cases, isolation and hospitalization of confirmed cases, contact-tracing and

quarantine, mass testing, etc.



In particular, since the novel coronavirus is transmitted among people who come in close contact with each other, the implementation of strict social-
distancing measures has been the primary tool for curbing the spread of the pandemic. As of April 7, 2020, stringent social-distancing mechanisms
(mandatory lockdowns/stay-at-home orders) have been imposed in over 42 states of the United States, together with Washington DC, Guam, and
Puerto Rico (representing over 95% of the US population; involving approximately 316 million Americans) [17]. The state of New York (the current
epicenter for COVID-19) has even imposed a fine against people who fail to comply with its stringent social-distancing measures that took effect
March 22, 2020. Common social-distancing measures or guidelines being employed in the US include temporary closures of schools and non-essential
businesses, avoiding crowded events and mass gatherings, moving in-person meetings online, etc. The city of Wuhan lifted its 76-day strict lockdown

on April 8, 2020 (this was done in a phased way, with the first relaxation of measures on February 9, 2020).

Contact-tracing is another major public health strategy for combating the spread of COVID-19. Contact-tracing involves searching for, or identifying,
individuals with whom the confirmed case has closely interacted within a certain time frame (e.g., two days prior to the onset of symptoms [18]),

interviewing, testing, and isolating or hospitalizing them if they have the disease [19], [20].

The use of face-masks in public by members of the general population has historically been a common practice to try to limit or combat the spread of
respiratory diseases, dating back to at least the 1918 HIN1 pandemic of influenza [21], [22], [23], [24], [25], [26]. Face masks may have been
instrumental in limiting the community spread of the 2002/2003 SARS epidemic in Asia (particularly in China, Singapore, Hong Kong and

Taiwan) [27], [28] as well as the containment of the COVID-19 pandemic in Taiwan [29]. Face-masks have dual purposes. If worn by a susceptible
individual, the mask offers efficacy against the acquisition of infection. On the other hand, if the wearer is already infected (but is asymptomatic or
mildly-symptomatic and unaware he/she is ill), the face-mask offers efficacy against their ability to transmit infection to susceptible individuals [12],

[307], [31], [32], [33].

Predicting the course or severity of a pandemic, such as COVID-19, as well as the realistic assessment of proposed public health intervention strategies
for combating them in real time, is a major challenge to both the public health and the scientific community. A number of models have been developed
and used to study COVID-19 dynamics. Ferguson et al. [34] used an agent-based model to investigate the effects of non-pharmaceutical interventions
on human deaths from COVID-19, and in reducing burden on healthcare facilities and equipment. They projected that, in the absence of control
measures, over 81% of the populations of the US and Great Britain might become infected and COVID-19 may cause up to 2.2 million deaths in the
US. Mizumoto and Chowell [35] used a mathematical model and incidence data to study changes in COVID-19 transmission potential as the outbreak
progressed through the Diamond Princess. They obtained a higher reproduction number and noticed a substantial decrease in the effective reproduction
number after improved quarantine was instituted. Hellewell et al. [36] used a stochastic model with COVID-19 data to examine the impact of contact-
tracing and isolation on disease control, and suggested that for most instances COVID-19 spread can be contained in 3 months if these measures are
highly effective. Using a stochastic model, Kucharski et al. [37] examined the COVID-19 trajectory in Wuhan from January—February 2020, showing a
reduction in transmission (a 1.3 reduction in the associated effective reproduction number of the model) when travel restrictions were implemented.

Consequently, there is a need to examine the combined impact of multiple non-pharmaceutical interventions applied together or in sequence.

The present study is based on the development of a new mathematical model for studying the transmission dynamics and control of the COVID-19
pandemic in the US (particularly in the state of New York, the epicenter of COVID-19). The model takes the form of a Kermack—McKendrick,
compartmental, deterministic system of nonlinear differential equations [38]. It incorporates features pertinent to COVID-19 transmission dynamics
and control, such as the quarantine of suspected cases and the isolation/hospitalization of confirmed COVID-19 cases (similar to the models developed
in [39], [40], [41]). The model, parameterized using available COVID-19 mortality data (more reliable than case data, provides a realistic real-time
assessment and estimate of the burden of the pandemic in the US state of New York, in addition to assessing some of the main intervention strategies

being implemented in the state (in particular, quarantine, isolation, contact-tracing, social-distancing and the use of face-masks in public).

2. Materials and methods

2.1. Formulation of mathematical model

We designed and analyzed a novel Kermack—McKendrick-type mathematical model for the transmission dynamics and control of COVID-19 in a
population [38]. The model, which incorporates the main non-pharmaceutical interventions being implemented to curtail COVID-19 transmission in a
community (such as social-distancing, quarantine of suspected cases, isolation of confirmed cases, contact-tracing, testing and use of face-masks in
public), is formulated based on stratifying the total human population at time ¢, denoted by N (¢), into the mutually-exclusive compartments of non-
quarantined susceptible (Sy (t)), quarantined susceptible (Sq (t)), non-quarantined exposed (i.e., newly-infected individuals who do not yet show
symptoms of the disease and cannot transmit infection, E, (¢)), quarantined exposed (E, (t)), symptomatically-infectious (I, (t)), asymptomatically-

infectious (I, (t)), hospitalized/isolated (I (£)), intensive care patients (L, (£)) and recovered (R (t)), so that



N (@) =8. () + 5 (1) + Bu (8) + Bg ()) + L (8) + L (€) + In (8) + Licw ()
+R(t).

It should be mentioned that the asymptomatically-infectious compartment (Z) also includes those with mild symptoms of COVID-19. Data from the
World Health Organization shows that about 80% of COVID-19 confirmed cases show mild or no symptoms [16], and that individuals in this category
(particularly those who are in the 65+ age group or those with pre-existing health conditions) can develop a mild form of pneumonia that might
require self-isolation or hospitalization [42], [43], [44], [45]. Furthermore, some individuals in this compartment (particularly those who show no
clinical symptoms [46]) can be detected (via testing and/or tracing and testing of the contacts of confirmed COVID-19 cases) and sent to self-isolation
or hospitalization. It is worth mentioning that, although the self-isolation or hospitalization of individuals in the I, class is associated with contact-
tracing, the I, to I transition can also result from improvement in (or scaling up of) testing as is the case in Iceland [47]. In fact, in our study, contact
tracing is very much inter-linked with testing. Contact tracing is carried out after a confirmed case is diagnosed (following testing/diagnosis of a
confirmed case). Furthermore, individuals in the quarantine class (Sq or Ey) are those who have been traced, following the positive diagnosis of
someone they have had close contact with (i.e., a confirmed COVID-19 case they have been exposed to). People in quarantine can be susceptible or
newly-infected (but unaware of their infection) status, and are continually monitored (tested) to determine their status. Those who test positive are
moved to the E class, and those who remain negative after the incubation period are returned to the S, class. Thus, the process of quarantining
individuals suspected of having had close contacts with an infectious individual can be interpreted as contact-tracing. In addition to contact-tracing (of
contacts of confirmed cases), people can be placed in quarantine because of other factors, such as having traveled to areas with high COVID-19
transmission (e.g., New York, Italy, China, Spain, UK, etc.) Quarantine and isolation can either be at home (self-quarantine and self-isolation) or at
designated healthcare facilities. Furthermore, hospitalization in the context of this study includes self-isolation at home and isolation at the hospital

(hence, hospitalization and isolation will be used interchangeably in this study).

The model is given by the following deterministic system of nonlinear differential equations (where a dot represents differentiation with respect to

time).
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where 8 is the effective contact rate (i.c., contacts capable of leading to COVID-19 transmission), 0 < ey < 1 is the proportion of members of the
public who wear face-masks (correctly and consistently) in public and 0 < eps < 1 is the efficacy of the face-masks (low values of eps imply limited
use of face-masks by members of the public, while values of eas that are closer to unity imply widespread/universal use of face-masks in the
community). Furthermore, values of €4 that are closer to zero imply that the face-masks are not very effective in preventing acquisition (if worn by a
susceptible human) or transmitting infection (if worn by a symptomatic or asymptomatically-infectious human), while €, close, or equal to, unity
implies that the face-masks used by the members of the public are of near or perfect efficacy against the acquisition or transmission of infection.
Reduction in the contact rate parameter (5) can be thought of a measure of effectiveness of strategies that limit contacts between people (to avoid
community transmission), notably social (or physical) distancing. The parameter 0 < 7, < 1 measures the relative infectiousness of asymptomatically-
infectious humans (in the I, class) in relation to symptomatic individuals (in the I, class). Similarly, 0 < 7, <1 is a modification parameter
accounting for the relative infectiousness of hospitalized/isolated infectious humans (in the I, class) in relation to individuals in the I, class. The
parameter 0 < 6, < 1is a measure of the effectiveness of quarantine, hospitalization/isolation and ICU admission to prevent infected quarantined,

hospitalized/isolated individuals and ICU patients from transmitting infection. In particular, 8; = 0 implies that infected quarantined,



hospitalized/isolated individuals and ICU patients mix freely with the rest of population and can transmit at the same rate as other infectious
individuals. On the other hand, 8, = 1 implies that the efficacy of quarantine, hospitalization/isolation and ICU admission (in preventing infected
quarantined, hospitalized/isolated individuals and ICU patients from transmitting infection) is perfect. In other words, 6, = 1 means infected
quarantined, hospitalized/isolated infectious humans and ICU patients are no longer part of the actively-mixing population (hence, do not contribute to

disease transmission).

In the model (2.1), the parameter 0 < p < 1 is the probability of infection per contact, while q is the proportion of non-quarantined individuals that are
infected at the time of quarantine. The parameter 1, measures the rate at which quarantined-susceptible individuals revert to the wholly-susceptible
non-quarantined class (Sy) at the end of the quarantine period. The modification parameter 0 < 6; < 1 is a measure of the efficacy of quarantine to
prevent the acquisition of infection by quarantined-susceptible individuals (during quarantine). It should be mentioned that, in the formulation of the
model (2.1), the quarantine rate is defined as a function of the proportion of infectious individuals in the community (in particular, the quarantine rate
of susceptible individuals is (1 — p) A, while that of newly-infected exposed individuals in the E, class is gpA, where X is the force of infection). In
other words, the more the number of confirmed COVID-19 cases in a community, the more the number of residents of that community that are
quarantined. The parameters oy, (04) is the rate at which exposed non-quarantined (quarantined) individuals progress to the symptomatic (hospitalized)
class (i.e., 1 / oy and 1 / & is the intrinsic incubation period of non-quarantined and quarantined exposed individuals, respectively). A proportion, f;,
of exposed individuals move to the I, class at the end of the incubation period (at the rate f;a,). Similarly, another proportion, f,, moves to I, class
(at the rate f,0y, and the remaining proportion, 1 — (f; + f,) moves to the I, class (at the rate [1 — (f; + f)] ou; noting that f; + f, <1). The
parameter g, represents the rate at which asymptomatically-infectious humans are detected (via contact-tracing) and hospitalized. The parameter o
represents the rate at which asymptomatically-infectious humans are detected (via contact-tracing) and hospitalized. A proportion, r, of exposed
quarantined individuals move to the I class at the end of the incubation period (at a rate ro,), while the remaining proportion, 1 — =, moves to the I,
class (at a rate (1 — 7) g4). The parameter o, represents the rate at which exposed non-quarantined individuals are detected (by contact-tracing) and
placed in quarantine. The parameter v, (y,) () (V;e ) 1S the recovery rate for individuals in the I, (1.) (In) (Lie) class, while uy, is the rate at which
hospitalized individuals are placed into ICU. Furthermore, the parameter &, (85) (d5) (dicu) represents the COVID-induced mortality for individuals in
the I, (I) (In) (Iiey) class. It is worth mentioning that, in the formulation of the model (2.1), the community transmission rate, 8, is assumed to be the
same for both the symptomatically-infectious (I,,) and the asymptomatically-infectious (I,) classes. It may be possible that the community contact rate
for asymptomatically-infectious individuals is higher than that of symptomatically-infectious individuals. This is due to the fact that the former are less
sick (or are not even aware that they are infected), and may, therefore, be having more contacts, and causing more infections. The assumption for the
homogeneity in the community contact rate allows for a more tractable assessment of the impact of social-distancing and other community contact

reduction strategies, as well as mathematical tractability.

The model (2.1) is an extension of the quarantine model for Ebola viral disease developed by Denes and Gumel [39] (by adding epidemiological
compartments for asymptomatically-infectious humans and hospitalized individuals in ICU, as well as incorporating contact-tracing of suspected cases
and the use of face-masks by members of the general public). To the authors’ knowledge, this may be the first deterministic model for COVID-19 that
incorporates five non-pharmaceutical interventions (quarantine, isolation, contact-tracing, use of public masks, and social-distancing), in addition to
allowing for the assessment of the impact of asymptomatic transmission on the trajectory and burden of COVID-19 (by adding a compartment for
asymptomatic-infectious humans). A flow diagram of the model is depicted in Fig. 1, and the state variables and parameters of the model are tabulated
in Table 1, Table 2). To keep track of COVID-19 related deaths (required for calibrating our model with cumulative death data for COVID-19, and for
quantifying and predicting the public health impact/burden of disease), we define the book-keeping state variable D (t) to measure the number of
COVID-deceased individuals. It then follows from some of the equations of the model (2.1) that the rate of change of the population of deceased-

individuals is given by:

D = Jqu + ‘shIh + ‘Salu + (si'cuIicu~ (
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Fig. 1

Flow diagram of the model (2.1) showing the transition of individuals between mutually-exclusive compartments based on disease

status.

Table 1

Table 1
Description of state variables of the COVID-19 model.
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Table 2

Description of the parameters of the model(2.1).

2.2. Baseline values of model parameters

We estimated the baseline epidemiological parameters of the model from available COVID-19 data and sources from the published literature. Since the
generally recommended period for quarantine of people suspected of being exposed to COVID-19 is 14 days [6], [16], we set the rate at which
quarantined susceptible individuals revert to the non-quarantined susceptible class (d;q) tobey, =1 / 14 per day. Further, while some studies have
estimated the incubation period for COVID-19 to range from 2-14 days, with about 97. 5% of infected people developing disease symptoms within
11.5 days of infection [13], [14], [15], other studies have estimated the incubation period to be 5-6 days [3]. We consider an average incubation period
(taken from these ranges) of 5.1 days, so that g, = g, =1 /5.1 per day [13]. Similarly, we set the progression rate from the asymptomatically-
infectious class (I5) to the isolated/hospitalized class (I;)to be o, = 1/ 4 per day. Following [34], [48], we consider an infectious period of about 10
days, so that the recovery rate from COVID-19 infection (y) is set to 4, = 4;,, = 1 / 10 per day. Ferguson et al. [34] estimated the average time
COVID-19 patients spent in hospital (for infections that do not lead to complications requiring ICU admission) to be about 8 days. Therefore, we set
v, =1/ 8 per day. Furthermore, following Ferguson et al. [34], it is assumed that there is a short time lag (of about 5 days) between the onset of
disease symptoms in non-quarantined humans and hospitalization. Hence, we set the hospitalization rate (¢, ) to be ¢, =1 / 5 per day. Some studies
have suggested that most COVID-19 infections (over 80%) show mild or no symptoms, about 14% show severe symptoms (but without requiring ICU
admission), and 6% show critically-severe symptoms requiring ICU admission [16], [49], [50]. Consequently, we set f, = 0.2 and assume that half of
the 80% of cases that show no or mild symptoms are asymptomatic (hence, we set f; = 0.4 and 1 — (f; + f,) = 0.4). The modification parameter for
the relative infectiousness of asymptomatic people (n,) was estimated from [34], [51] to be 0.5. Further, Li et al. [51] estimated this parameter to be
between 0.42 and 0.55. Hence, we set i, =, = 0.5. Since about 15% of COVID-19 patients die [34], we estimated §, = &, = 0.015 per day. To
obtain estimates for d, and d;,, we assume that 8, = 0.5, (so that §, = 0.0075 per day) and 8;, = 1. 56, (so that, §;,, = 0.0225 per day) [52]. The

parameter for the efficacy of quarantine to prevent acquisition of infection during quarantine (;) is estimated to be 8; = 0.5.

We estimated the efficacy of face-masks (€pr) based on the results of a number of clinical trials. For instance, data from Driessche et al. [53] shows that
surgical masks reduced P. aeruginosa infected aerosols produced by coughing by over 80% in cystic fibrosis patients. A similar study by Stockwell

et al. [54] shows that surgical masks reduced colony-forming unit (CFU) count by over 90% (these two studies in [53], [54] show that the N95 masks
(respirators) were more effective). Similarly, van der Sande et al. [55] show that home-made tea-cloth masks had an inward efficiency between 58%
and 77% over a 3-hour duration of wear, while inward efficiency ranged 72%-85% and 98%—-99% for surgical and N95-equivalent masks.
Consequently, following Eikenberry et al. [52], we estimate inward mask efficacy to range widely between 20%-80% for cloth masks, and at least
50% for well-made, tightly fitting masks made of optimal materials, and 70%-90% for surgical masks, and over 95% typical for p in the range of
properly worn N95 masks. Based on this, we set ear = 0.5. We set the proportion of quarantined exposed individuals who are hospitalized (r) to be
r=0.7. There is no good data for the efficacy of isolation/hospitalization to prevent disease transmission by symptomatic individuals in
isolation/hospital. Nonetheless, it seems plausible to assume that, at the later stage of the pandemic (such as at the present moment), the public health
system capacity has been greatly improved to the extent that such transmission do not occur. Hence, we set 6, = 1. The parameter (v, ) for the rate of
ICU admission is estimated to be ¥, = 0.083 per day (based on data from [56] it is in the range of 6% — 12%). The remaining parameters of the model
(2.1), B, em, g, and ay,, were estimated from the mortality data for the state of New York and the entire US [4], [5], [6], [7] (based on the fitting of the
state of New York data in Fig. 2(a) and data for the entire US in Fig. 2(b)). The estimating process involved minimizing the sum of the squares of the
difference between the predictions of model (2.1) (cumulative deaths) and the observed COVID-19 cumulative deaths data from New York state (for
the period from March 1, 2020 to April 7, 2020). In particular, the fitted values obtained using the state of New York mortality data were 8 = 0. 8648
per day, p = 0.8073 per day, epr = 0.0546, o, = 0.2435 per day and o, = 0.1168 per day, while the fitted values obtained using mortality data for the
entire US were 8 = 1. 0966 per day, p = 0.7163, cpr = 0.1598, o, = 0. 3090 per day and a,, = 0. 1065 per day.

SN e ‘;' Fig. 2
/| Time series plot showing a least squares fit of system (2.1) to New York state (a), and entire US (b), COVID-19 related death data [4],
4 [5], [6], [7]. The red dots represent data points, while the solid blue lines represent predictions of death ...

3. Results
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3.1. Analytical results: Asymptotic stability analysis of disease-free equilibrium
The model (2.1) has a line of disease-free equilibria (DFE), given by
(S2,8, Ba B I Iy I Iy, RY) = (S4.(0),0,0,0,0,0,0,0,0),

where S, (0) is the initial size of the non-quarantined susceptible individuals. The asymptotic stability of the DFE will be analyzed using the next
generation operator method [57], [58]. Using the notation in [57], it follows that the next generation operator matrices, F' and V for the new infection

terms and the transition terms, are given, respectively, by F (see Box I)

Box |
F
00 B(l—emen)(1-g)p B(l—emen) 1 —g)pm, B —emen)(1—-g)pn, O
00 BQ-—emem)ap B (1 — emcnr) gpmy, B (1 —excar) apm, 0
|00 0 0 0 0
“loo 0 0 0 0 ’
00 0 0 0 0
00 0 0 0 0
and,
K, 0 0 0 0 0
—y o, 0 0 0 0
v —f10u 0 K2 0 0 0
- —fo0u —T0q —¢, Kz —0o 0 ’
-1-fi-f,) ~A-7)gy 0 0 K4 0
0 0 0 -, 0 Kj;

where, K1 = 0y + ay, Ko =7, + &, +6u, Ks =7, +vn + 61, Ks =7, +0,+ . Itis convenient to define &, by (where p now represents the
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The result below follows from Theorem 2 of [57].
Theorem 3.1
The disease-free equilibrium (DFE) of the model (2.1) is locally-asymptotically stable if . < 1, and unstable if #e > 1 .

The quantity Z. is the control reproduction number of the model (2.1). It measures the average number of new COVID-19 infections generated by an
average infected individual introduced into a population where basic public health interventions (quarantine, isolation, social-distancing, testing etc.)

are implemented. The quantity %, is the sum of the constituent reproduction numbers associated with the number of new COVID-19 cases generated

by symptomatically-infectious humans (Z...), hospitalized/isolated individuals (%) and asymptomatically-infectious humans (%e,). The

epidemiological implication of Theorem 3.1 is that a small influx of COVID-19 cases will not generate a COVID-19 outbreak if the control



reproduction number (£,) is less than unity. It is worth mentioning that for Kermack—McKendrick-type mathematical models with no
vital/demographic dynamics (i.e., births or natural death processes) or waning immunity (to continuously feed the susceptible class), such as the model
(2.1), it is instructive to compute the final size of the epidemic [40], [59], [60], [61], [62]. The final epidemic size relations, which are natural
quantities associated with the dynamics of epidemic models (with no vital/demographic dynamics), allow for the realistic quantification of disease
burden and can be used to assess the impact and effectiveness of various intervention and mitigation strategies [40]. The final size relations for the

epidemic model (2.1) are calculated in Section 3.2.

3.2. Computation of final size of the pandemic

In this section, the final size of the COVID-19 pandemic will be calculated. Using the notation in [59], let & € RS, y € R%, and 2z € R, represent the
sets of infected, susceptible and recovered components of the model. Thus, it follows from the model (2.1), that  (t) = (B, (¢), Eq (t), L. (¢), In (¢),
L (), Liw (0), (2) = (Su (t), Sq (£))T and z(£) = R (t). Further, following Arino et al. [59], let D be the m x m diagonal matrix whose diagonal
entries, denoted by ¢;(i = 1,2,...,m), are the relative susceptibilities of the corresponding susceptible class. It is convenient to define I7 to be an

n X n matrix with the property that the (2, ) entry represents the fraction of the jth susceptible compartment that goes into the sth infected
compartment upon becoming infected. Let b be an n-dimensional row vector of relative horizontal transmissions. Using the notation in [59], let the
infection rate, A, of the model (2.1) be represented by 8. That is, A = B(z, y, 2). It is convenient to define the m-dimensional vector

I'=|n,I,...,I;] = BV LD [59]. It follows, in the context of the model (2.1), that

b= [07 0) 17’7};;710,0] )

re [%, BQ — emenm) (1 — 7) (K37 + 10a) + 7,7K4] 65 ] ,

K;K,
D= 10

0 6
and,
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Using the above change and variables and definitions, the model (2.1) reduces to:

& = IIDyB (z,y,z) bz — Vz,

w
\S)

y= _Dyﬂ (E,.% z) bz, (3.

2 =Wz,

where W is a k x n matrix with the property that the (4, ) entry represents the rate at which individuals of the jth infected compartment transition into
the recovered (ith 2) compartment upon recovery and the matrix V is as defined in Section 3.1. It is worth stating that the reproduction number (£, of
the model (2.1) (or, equivalently, (3.2)), can be recovered using the definition 2, = 8(0, ¥y, 20) bV " II Dy, given in Theorem 2.1 of [59] (it should be
noted that this theorem also allows for recovering the local asymptotic stability result for the family of disease-free equilibria of the model (2.1), given
in Section 3.1). Furthermore, the results below, for the final size relations of the model (2.1) (or, equivalently, (3.2)), can be established using Theorem

5.1 of [59].
Theorem 3.2

Consider the epidemic model (2.1) (or, equivalently, (3.2) ). The final size relations are given by

5.(0) \ ., [S.(0) 5. (o0)]
1“( 5. (o) ) > e

5. (0)
+ 0;p8 (1 — emenr)[(1 — r) (K, + M,06) + 1,7K4][Su (0) — Sy (00))]
S, (0) K3 Ky
+ PO —emem) g0t C2E, (0) + CsI, (0) + Caly (0) + Cs1, (0))],

Su (0) K1 K K3 Ky



where,

6;
5,(00) > 5, (0) (%ﬁ;’) , 33)

C1 = {{(ray + faou)Ks +05[(1 —r) a, + (1 = f1 — fo)]}
+ 1, K31 —7) e + (1 - f, — f)} K2
+ a'uK4f1 (nh¢u + K3)7

Cy = K1 Kz [, (1 —7) K3 + (1 — ) 1,06 + 1, K4],
Cs = K1 Ky (¢, + K3)
Cy = K1 Ka Kymy,,

Cs = K1 K (n,K3 +n,0a) ,

with the parameter groupings K; (i = 1,2, 3,4) as defined in Section 3.1. It is worth mentioning that, by setting
E, (0) = E; (0) = I, (0) = I, (0) = Ly, (0) = S, (0) = 0, with S, (0) > 0 and I, (0) > 0, the final size relations, given by the inequalities in (3.3),

reduce to:

4. Numerical simulations

52 (0) Y- - [Su (0) = S (o)
h(su (oo))2 5.0

9;8 (1 — emem)[(1 — 1) (K37, + M,94) + 1 K4][Su (0) — 5, (o0)]

+
Su (0) K3 Ky

nnpB (1 — emen)

5. 0 Ks I (0).

We simulated the model (2.1) using the baseline parameter values tabulated in Table 3 (unless otherwise stated), to assess the population-level impact

of the various control and mitigation strategies against the spread of COVID-19 in the US state of New York discussed in Section 2.1. We also

simulated the model using the calibrated parameters in Table 4, together with the other estimated parameters in Table 3, to assess the population-level

impact of various control measures in the entire US. It should be mentioned that in all the simulations carried out, the various non-pharmaceutical

interventions are maintained at their baseline values (unless otherwise stated).

Table 3
[

Table 3

Estimated and fitted parameters of the model (2.1) using COVID-19 mortality data for the state of New York [4], [5], [6], [7]. With this set of

parameter values, the control reproduction number (£.) is given by #Z. = 1.95.

Table 4

Estimated and fitted parameters of the model (2.1) using COVID-19 mortality data for the entire US [4], [5], [6], [7]. Using this set of parameter

values, the control reproduction number (£,) is given by £, = 2.07.

We simulated the model to, first of all, assess the impact of social-distancing (which, in our study, extends beyond individuals staying 2 meters (or 6 ft)

apart to include school and non-essential business closures, staying at home, avoiding large gatherings, etc.). Further, in our study, we measured the

effect of social-distancing by the overall reduction in the baseline value of the community contact rate parameter (8). The simulation results obtained,

depicted in Fig. 3, show a projected 66,300 patients in hospital (or in self-isolation) at the pandemic peak, expected to be attained on May 5, 2020 (

Fig. 3(a)) and 105,100 cumulative number of deaths (Fig. 3(c)) for the state of New York under the baseline scenario (i.e., for the baseline level of

social-distancing). Similarly, the projections for the entire US, under the baseline nation-wide social-distancing scenario, are 115,000 daily
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hospitalizations at the pandemic peak (Fig. 3(b)) and 164,000 cumulative number of deaths (Fig. 3(d)). It is noteworthy that our projection for the
cumulative mortality for the entire US (of 164,000) falls markedly below the 2.2 million mortality projected by Ferguson et al. [34]. Our US-wide
mortality projection, however, falls within the range of (38, 243, 162,106) estimated by Murray et al. [65]. When social-distancing is improved above
the baseline effectiveness levels (i.e., increase in efficacy and adherence/coverage of social-distancing), Fig. 3 shows a dramatic reduction of COVID-
19 burden for both New York state and the entire US. In particular, for a social-distancing regimen that reduces the contact rate parameter 8 by 10%
from its baseline value, the expected number of daily hospitalizations/isolation of confirmed cases at the peak of the pandemic decreases to 50,380
(corresponding to a 24% decrease in hospitalizations/isolation from baseline) for the state of New York. Similarly, nation-wide
hospitalizations/isolation of confirmed cases at the peak of the pandemic decreases by 21% to 89,930. Furthermore, for a highly-effective social-
distancing strategy (such as a social-distancing strategy that results in at least 40% reduction in the baseline value of ), the peak
hospitalizations/isolation of confirmed cases for New York state and the entire US dramatically reduce to 5,000 and 14,000, respectively (this
represents a 92% and 88% reduction in peak hospitalizations for the state of New York and nationwide, respectively). Similarly, for this scenario, the
cumulative mortality for New York state and the entire US reduce, respectively, to 20,700 and 59,600. Thus, implementing a highly-effective social-
distancing strategy (which can reduce the baseline community contact rate, 8, by at least 40%) will avert over 80% and 64% of the predicted baseline
deaths in New York state and nationwide, respectively. The effectiveness levels and coverage of social-distancing in New York state and the entire US
has greatly improved, by April 2, 2020 [66], [67], [68], [69], to the extent that it is plausible to assume that 40% reduction in the baseline value of 8
has already been achieved in both the state of New York and nationwide. Therefore, this study shows that the state of New York and the entire US
could have recorded catastrophic COVID-19-induced mortality (between 100,000 to 200,000) if not for the high effectiveness levels and coverage of
the strict social-distancing measures implemented in the state and nationwide. Our study suggests that if the current level of social-distancing
effectiveness and coverage is maintained through May or June 2020, in the state of New York and nationwide, COVID-19 can be eliminated from both
the state and the entire nation. Extending the simulations for Fig. 3 shows that the current level of the social-distancing regimen in the state of New
York should be extended until late September 2021 to guarantee the elimination of COVID-19 (in the context of Fig. 3, COVID-19 elimination is
measured in terms of when the cumulative mortality stabilizes). Similarly, for the entire US, social-distancing needs to be maintained until March

2021.

fi Fig. 3
,-'.'. - WL, Effect of social-distancing (5). Simulations of the model (2.1), showing daily hospitalizations (and self-isolation) and cumulative

mortality, as a function of time, for various values of social-distancing effectiveness (measured in terms of efficacy ...

Additional simulations were carried out to assess the population-level impact of the duration and timing of when to terminate the current strict social-
distancing protocols. For the best-case scenario, where the current strict social-distancing protocols were assumed to be implemented right from the
very beginning of the COVID-19 pandemic in New York state (March 1, 2020) and the entire US (January 20, 2020) and maintained until early
December, 2020, the results obtained for the cumulative mortality recorded for New York state and the entire US are 25,000 and 60,000, respectively.
This represents 76% and 63% reductions, respectively, in the cumulative mortality for New York state and the entire US, in comparison to the baseline
scenario (i.e., worst-case scenario where the social-distancing and other community contacts-reduction strategies have not been implemented at the
stringent levels) (blue curves in Figs. 4(a)—(f)). Furthermore, if the social-distancing regimens were implemented on the days they were officially
implemented in New York state (March 22, 2020) and the entire US (March 16, 2020), but maintained until early December, 2020, the cumulative
mortality to be recorded will be 55,000 and 75,500. This represents 48% and 53% reductions, respectively, in the cumulative mortality from the

baseline (magenta curves in Figs. 4(a)—(f)).

Fig. 4
e L= —=—| Effect of duration and timing of the termination of the strict social-distancing () measures currently in place in New York state and the

entire US. Simulations of the model (2.1), showing the effect of the duration and timing of the termination ...

The effect of the timing of when to terminate the current strict social-distancing protocols was also monitored. Our simulations show that terminating
the current strict social-distancing by the end of April 2020 (i.e., the 40% reduction in the baseline value of 8 is now lost due to the termination of the
social-distancing measures), a significant rebound of COVID-19 burden will be recorded in as early as July 2020. In particular, New York state will
record 144,000 deaths representing a 37% increase from the baseline scenario (Fig. 4(a)), while the entire US will record up to 156,000 deaths. This

represents a mere 5% reduction of cumulative mortality, in relation to the baseline scenario (Fig. 4(d)). In other words, the early termination of the
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current strict social-distancing measures (by the end of April 2020) will result in catastrophic COVID-19 burden, similar to the dire projections made
for the pre-social-distancing period (i.e., all the gains of the social-distancing and other control and mitigation measures will essentially be lost).
However, if the strict-distancing measures were to be terminated by the end of May, 2020, the cumulative mortality figures are projected to be 91,800
for New York state and 118,300 for the entire US. This represents a 13% and 28% reduction, respectively, in the baseline cumulative mortality (Figs. 4
(b) and (e)). Finally, if the social-distancing measures are terminated at the end of June, 2020, the projection for the cumulative mortality figures are
33,200 for New York state and 50,300 for the entire US. This represents 68% and 69% reductions, respectively, in the baseline cumulative mortality (
Figs. 4(c) and (f)). These projected mortality numbers, for the early termination of social-distancing, fall within the range given by Murphy et al. [65].
Our study clearly shows that the clamor to relax or terminate the social-distancing measures (that have proven to be hugely successful in both the state
of New York and the entire US), as part of the move to re-open the state and the country, would undoubtedly trigger a devastating rebound of COVID-
19 in both New York state and the entire US. Data has already shown that certain countries that have relaxed the successfully-implemented social-
distancing measures, such as Taiwan, Hong Kong, and South Korea, are now witnessing a rebound of COVID-19 [70]. In particular, Hong Kong
announced 84 newly-confirmed cases on March 28 (followed by over 70 new daily cases in the next three days). Further, Taiwan reported more than 20
newly-confirmed cases per day in mid-March (up from barely 5 cases per day late in January). South Korea reported 83 newly-confirmed cases on

April 3, 2020 [70].

It is worth mentioning that the aforementioned simulations for the effect of social-distancing were carried out for the case where other interventions
(contact-tracing, quarantine, face-mask, usage etc.) are also implemented (at their baseline values in Table 3, Table 4). If face-masks are not used, then
the above cumulative numbers will be even more catastrophic. For instance, if the strict social-distancing protocol is terminated in New York state by
April 30, 2020, and no face-mask-based intervention is implemented, about 150,800 deaths will be recorded by July 2020. Furthermore, terminating
the social-distancing protocols by end of May 2020 or end of June 2020 will result in projected 108,500 and 44,300 deaths, respectively, in the state.
The corresponding numbers for the entire US (for the case where mask-based intervention is not implemented) are projected to be 167,000, 148, 000,
and 91,900, respectively. Thus, this study strongly suggest that utmost caution should be exercised before terminating the current strict social-
distancing protocols being implemented in the state of New York and nationwide. At the very least, a careful state-by-state (or county-by-county)

phase withdrawal (based on the updated COVID-19 incidence, mass testing data, and proximity to COVID-19 hot spots) should be carried out.

The effect of quarantine of individuals suspected of being exposed to COVID-19 is monitored by simulating the model (2.1) using the baseline
parameter values and various levels of effectiveness of quarantine to prevent the acquisition of infection during quarantine (6;). The results obtained,
depicted in Fig. 5, show that quarantine of susceptible individuals has only marginal impact in reducing COVID-related hospitalizations for both New
York state (Fig. 5(a)) and the entire US (Fig. 5(b)). In particular, at the baseline quarantine efficacy (; = 0. 5), the state of New York will record
66,000 daily hospitalizations. The implementation of a perfect quarantine in the state (i.e., 6; = 0) reduces the number of hospitalizations marginally to
60,000. The numbers for the entire US for the baseline and perfect quarantine are 115,000 and 97,000, respectively. The marginal effect of quarantine
in minimizing COVID-related hospitalizations is even more pronounced when the isolation strategy is perfect (Figs. 5(c) and (d)). That is, for the
epidemiological scenario where the isolation (or hospitalization) of confirmed cases is perfect (that is, individuals in isolation at home or in hospital
are not part of the actively-mixing population, so that 6, = 1), the community-wide implementation of mass quarantine of individuals suspected of
being exposed to COVID-19 will have very marginal impact on COVID-19 burden (measured in terms of reductions in COVID-19 hospitalizations).
This result is consistent with that reported in [71]. Thus, this study suggests that, since self-isolation and isolation in hospitals have been implemented
at high effectiveness levels in both the state of New York and in the entire US, the mass quarantine of suspected cases may not be a cost-effective
public health strategy for combating the spread of COVID-19 in both New York state and the entire US. Figs. 5(c) and (d) illustrate the dynamics of
the model (2.1) for various effectiveness levels of quarantine and isolation, for both New York state and the US, further emphasizing the marginal

nature of quarantine (even for the cases where isolation was not implemented at a perfect level) in minimizing COVID-19 hospitalizations.

Fig. 5
Effect of quarantine of individuals suspected of being exposed to COVID-19. Simulations of the model (2.1), showing daily

hospitalizations, as a function of time, for various values of the efficacy of quarantine (6;) to prevent infection during ...

The effect of contact-tracing (measured in terms of the detection of asymptomatic cases, following testing/ diagnosis of a confirmed COVID-19 case
they may have had close contacts with or random testing) on the transmission dynamics and control of the COVID-19 pandemic is also monitored by
simulating the model (2.1) using the baseline parameter values in Table 3 and various values of the contact-tracing parameters (o, and g3). In
particular, the simulations are run by increasing the values of @, and g,, simultaneously (and by the same amount) from their respective baseline

values. Fig. 6 depicts the solution profiles obtained, showing the worst case scenario of 49,400 cases in the state of New York and 64,600 cases
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nationwide on the day the pandemic peaks (on April 26, 2020) if no contact tracing is implemented. If implemented at its baseline rate, contact tracing
reduces the size of the pandemic peak number of new COVID-19 cases by 27% for the state of New York, and by 22% nationwide, while a 75%
improvement in contact-tracing will reduce the predicted number of confirmed cases to approximately 31,300 for the state of New York and 41,200
nationwide. This represents 13% and 10% reduction from baseline and shows that while contact-tracing implemented even only at baseline is important
in reducing the size of the pandemic peak number of new COVID-19 cases, investing much resources towards contact-tracing beyond the baseline rate

might not be cost-effective.

Fig. 6

/ K,x\\ £ /\ Effect of contact-tracing (o, and ¢,). Simulations of the model (2.1), showing the number of new COVID-19 cases for various levels of
N s "_‘

contact-tracing effectiveness (measured based on increases in the values of the contact-tracing parameters, ...

Simulations were further carried out to assess the population-level impact of the widespread use of masks in public, by running the model (2.1) with
various values of mask efficacy (ear) and coverage (epr). The results obtained, depicted in Fig. 7, show a marked decrease in the number of
hospitalizations, for both New York state (Figs. 7(a), (b) and (c)) and the entire US (Figs. 7(d), (e) and (f)), with increasing values of the mask efficacy
and coverage. Further, using an efficacious mask, such as a mask of efficacy 50%, can greatly flatten the pandemic curve, in addition to significantly
reducing the burden of the pandemic (measured, in this case, in terms of hospitalizations). However, such a mask will fail to lead to the elimination of
the disease (Fig. 7(b)). It is worth emphasizing that, although the use of masks with low efficacy may not lead to disease elimination, they still are
highly useful by causing a significant decrease in the burden of the pandemic (i.e., significantly reduce hospitalizations) if a significant proportion of
the populace wear them. For instance, if 75% of the populace in New York or the entire US wear masks with efficacy as low as 25% (i.e., cloths
masks), the number of hospitalizations will be reduced by 63% and 64%, respectively (compared to the scenario were masks were not used) (Figs. 7(a)
and (d)). A contour plot of the reproduction number of the model (%), as a function of masks efficacy (epr) and compliance (eps) is depicted in Fig. 8.
If masks of higher efficacy, such as surgical masks (with estimated efficacy > 70%) are used in the state of New York, disease elimination is, indeed,

feasible if at least 70% of the populace wear the masks (Figs. 8(a) and (b)). Similar results were obtained for the entire US (Figs. 8(c) and (d)).

= | Fig.7
. i . .'I .'.
J'I Re 4 e % | Effect of face-mask use in public. Simulations of the model (2.1), showing daily hospitalizations, as a function of time, for various

R -"I fh efficacies of face-masks (e,,) and coverage (¢;,). (a) 25% mask efficacy for the state of New York. (b) 50% mask ...

Fig. 8
Effect of face-masks use in public. (a) Contour plot of the control reproduction number (£.), as a function of face-mask efficacy (e )

and mask coverage (cur), for the state of New York. (b) Profile of the control reproduction number ( ...

Additional simulations were carried out to assess the combined impact of public face-masks use strategy and strict social-distancing strategy (which
reduces the baseline value of the community transmission parameter, 8, by 40%) on the control of COVID-19 in New York state and the entire US. The
results obtained, depicted in Fig. 9, show that, combining the strict social-distancing strategy with a strategy based on using moderately-effective face-
masks (with efficacy e > 0.5) in public, will lead to the elimination of the disease in New York state if only 30% of the population use face-masks in
public (Fig. 9(a)). This clearly shows that disease elimination in New York state is more feasible if the face-masks-based strategy is combined with the
strict social-distancing strategy. Similar results were obtained for the entire US (Fig. 9(b)), where, in this case, only 10% compliance in mask usage in

public will be needed for COVID-19 elimination.

Fig. 9

Effect of combined use of face-masks in public and strict social-distancing. Profile of the control reproduction number (%, ), as a

function of mask coverage (cjs) for different percentage reductions in the baseline value of the effective contact ...

In summary, the above simulations show that the use of face-masks (even those with low efficacy, but with high coverage) in public offers significant

community-wide impact in reducing and mitigating the burden of COVID-19 in both New York state and the entire US. In other words, the use of low
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efficacy face masks with high coverage is always useful. Further, combining the face-masks use strategy with a strategy based on the implementation

of strict social-distancing is more effective in curtailing (and eliminating) COVID-19, in comparison to the singular implementation of either strategy.

5. Discussion and conclusions

The world is currently experiencing a devastating pandemic of a novel Coronavirus (caused by SARS-CoV2) that emerged in Wuhan city of China in
December of 2019. The deadly COVID-19 pandemic has spread to over 210 countries, causing over 3 million cases and 230,000 deaths worldwide by
the end of April, 2020 (with some parts of Asia, Europe and, now, the US suffering the brunt of the burden). There is currently no safe and effective
vaccine for use in humans against COVID-19. There is also no safe and effective antiviral. Consequently, control and mitigation efforts against
COVID-19 are limited to non-pharmaceutical interventions, such as social-distancing (which involves keeping a physical distance of at least 6 ft from
other humans in public, lockdowns of communities, closure of schools, malls, places of worships and other gathering places), quarantine of suspected
cases, contact-tracing, isolation (at home or in hospital) of confirmed cases and the use of face masks (both low quality cloth masks and the higher
quality surgical masks) in public. This study is based on the design, analysis and simulations of a new mathematical model for providing deeper
insights into the transmission dynamics and control of COVID-19 in a community. Specifically, the model designed in this study was parameterized
using COVID-19 data from the US state of New York and the entire US population. The model was used to assess the population-impact of the

aforementioned control and mitigation interventions.

We parameterized the model using COVID-19 data from New York state and the entire US, and extensive numerical simulations were carried out
using the parameterized model to assess the population-level impact of the various intervention strategies. With the baseline levels of the four main
intervention strategies considered (social-distancing, quarantine/isolation, contact-tracing and the use of face-masks), the state of New York is
projected to see a peak of the pandemic around mid April, 2020 (with 66,300 number of hospitalizations/isolation of confirmed cases and 105,100
deaths at the peak), while the entire US will see its peak around end of April, 2020 (with 115,000 hospitalizations/isolation of confirmed cases and
164,000 deaths at the peak). Our projections for baseline (worst-case) mortality for the US are much lower than the 2.2 million deaths suggested by
Ferguson et al. in the absence of interventions [34], but fall within the range estimated in [65]. Our projected numbers for COVID-19 burden
(morbidity and mortality) dramatically decreases if strict social-distancing measures are implemented at high adherence levels. For instance, it was
shown that strict compliance to the statewide lock-down in New York state (which corresponds to reducing the baseline contact rate in our model by at
least 40%) will reduce the peak values for hospitalizations/isolation of confirmed cases and mortality by 92% and 80%, respectively. Similarly, the peak
values for cases and mortality in the entire US (if a nation-wide lockdown capable of reducing baseline contact rate by at least 40%) will decrease by

88% and 64%, respectively.

The duration and timing of the termination of strict social-distancing measures are critically-important in the battle to effectively combat pandemics of
respiratory diseases, such as the devastating COVID-19 pandemic. While the rapid implementation of strict social-distancing measures (during the
early stage of the pandemic), maintained over a relatively long period of time (e.g., until the summer), will undoubtedly effectively combat the burden
of the pandemic. Early termination of these measures will cause catastrophic outcomes. For instance, our study shows that relaxing or terminating the
strict social-distancing measures in the state of New York and the US as a whole by end of April 2020 will trigger a devastating second wave,
generating COVID-19 burden similar to those obtained during the pre-strict-social-distancing time in the state and in the entire nation by the end of
July 2020 (with cumulative mortality numbers in the range reported in [65] for both New York state and the entire US). In particular, up to 144,000 and
156,000 cumulative deaths will have been recorded in the state of New York and the entire US if the social-distancing measures are shut down by the
end of April, 2020. Extending the termination of social-distancing, such as to end of June 2020, significantly reduces the likelihood of a second wave
(in addition to significantly reducing the associated burden of the pandemic). Consequently, a great deal of caution must be exercised before decisions
are made to relax or terminate the existing highly-successful social-distancing protocols in both the state of New York and the entire US. It is
noteworthy that countries that have recently relaxed these measures, such as Taiwan, Hong Kong and South Korea, have already started seeing a
rebound of COVID-19. Our study suggests that the decision to relax or terminate the social-distancing measures should by on a case-by-case

(i.e., state-by-state or county-by-county) basis, and should be informed by updated COVID-19 incidence and mortality data, number of COVID-19
tests (both antibody and surveillance tests) and proximity of a locality to COVID-19 hot spots. In particular, our study shows that strict social-
distancing should be maintained until the year 2021 (up to late September 2021 for New York state, and early March, 2021 for the entire US) to
eliminate COVID-19.

Quarantine of people suspected of being exposed to a respiratory disease is perhaps the oldest public health control measure in human history. Our
study shows that widescale implementation of quarantine intervention may not be very effective (in minimizing the burden of COVID-19) if the
strategy of isolating confirmed cases is effective. In other words, our study suggests that if isolation can be implemented effectively (high efficacy and
coverage), then quarantine of people suspected of contracting COVID-19 may not be necessary. This result is consistent with what was reported by
Day et al. [71]. Tracing the contacts of confirmed cases (known as contact-tracing) was also shown to only be marginally-effective in minimizing the

burden of the pandemic. In particular, even if contact-tracing is implemented at the highest possible level (represented in our study based on increases



in the contact-tracing parameters by 75%), the decrease in the burden of the pandemic recorded was only marginal (13% and 10% for cases in New

York state and nationwide, respectively, and 5% and 3% for mortality for New York state and nationwide, respectively).

The use of face-masks in public in times of outbreaks of respiratory diseases has a rich history. Although quite popular in some parts of the world
(notably Asia), the use of face-masks in public is somewhat controversial. This was more evident in the US during the COVID-19, leading, ultimately,
to the recommendation to use face-masks (home-made cloths masks) in public by The US Centers for Disease Control and Prevention (CDC) on April
2, 2020. Our study shows that the use of high efficacy masks (such as surgical masks, with estimated efficacy of at least 70%) will lead to a dramatic
reduction of COVID-19 burden if its coverage is high enough (at least 70%). In fact, our study shows that even face-masks of low efficacy (home-
made cloths masks) will lead to a dramatic reduction of disease burden (albeit this will not lead to the elimination of the disease). For example, even
face-mask efficacy of 25% can lead to a 63% and 64% reduction in the number of hospitalizations/isolation of confirmed cases at the pandemic peak in
New York state and nationwide if 75% of the population wear face-masks in public. These results are consistent with those reported by Eikenberry

et al. [52]. Furthermore, by generating contour plots for the control reproduction number of the model (2.1) (£.), as a function of mask efficiency (er)
and coverage (eyr), our study shows that the use of high efficacy masks (such as surgical masks, with estimated efficacy of > 75%) will, indeed, lead to
the elimination of COVID-19 (in both the state of New York and in the entire US nation) if the coverage is high enough (about 80%). This study shows
that the use of face-masks in public is always useful, and their population-level impact increases will increases efficacy and coverage. In particular,
even the use of low efficacy masks will greatly reduce the burden of the pandemic if the coverage in their usage in the community is high enough.
Furthermore, our study shows that combining the masks-based strategy with the strict social-distancing strategy is more effective than the singular
implementation of either strategy. For instance, our study shows that COVID-19 can be eliminated from the state of New York if the strict social-
distancing measures implemented are combined with a face-masks strategy, using a moderately-effective mask (with efficacy of about 50%) if only
30% of the residents of the state wear the masks. The masks use compliance needed to eliminate the disease nationwide, under this scenario with strict

social-distancing nationwide, is a mere 10%.

In summary, our study suggests that, like in the case of the other Coronaviruses we have seen in the past (namely SARS and MERS [10]), COVID-19
is a pandemic that appears to be controllable using basic non-pharmaceutical interventions, particularly social-distancing and the use of face-masks in
public (especially when implemented in combinations). The factors that are obviously critically-important to the success of the anti-COVID-19 control
efforts are the early implementation (and enhancement of effectiveness) of these intervention measures, and ensuring their high adherence/coverage in

the community.
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