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Abstract

We use COVID-19 case and mortality data from 1 February 2020 to 21 September 2020
and a deterministic SEIR (susceptible, exposed, infectious and recovered)
compartmental framework to model possible trajectories of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections and the effects of non-pharmaceutical
interventions in the United States at the state level from 22 September 2020 through 28
February 2021. Using this SEIR model, and projections of critical driving covariates
(pneumonia seasonality, mobility, testing rates and mask use per capita), we assessed

scenarios of social distancing mandates and levels of mask use. Projections of current
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COVID-19 across the United States by 28 February 2021. We find that achieving universal
mask use (95% mask use in public) could be sufficient to ameliorate the worst effects of
epidemic resurgences in many states. Universal mask use could save an additional
129,574 (85,284-170,867) lives from September 22, 2020 through the end of February
2021, or an additional 95,814 (60,731-133,077) lives assuming a lesser adoption of mask
wearing (85%), when compared to the reference scenario.

Main

The zoonotic origin of the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)!first reported in Wuhan, China?, and the global spread of the coronavirus
disease 2019 (COVID-19; https://covid19.who.int/)3 promises to be a defining global
health event of the twenty-first century*. This pandemic has already resulted in extreme
societal, economic and political disruption across the world and in the United States
(https://www.economist.com/united-states/2020/03/14/tracking-the-economic-
impact-of-covid-19-in-real-time/)>°. The establishment of SARS-CoV-2 and its rapid
spread in the United States has been dramatic
(https://www.thinkglobalhealth.org/article/updated-timeline-coronavirus/). Since the
first case in the United States was identified on 20 January 2020 (ref. /; first death on 6
February 2020: https://www.sccgov.org/sites/covid19/Pages/press-release-04-21-20-
early.aspx), SARS-CoV-2 has spread to every state and has resulted in more than 28.2
million cases and 199,213 deaths as of 21 September 2020
(https://coronavirus.jhu.edu/map.html)”-8,

There remains no approved vaccine for the prevention of SARS-CoV-2 infection, and few
pharmaceutical options for the treatment of COVID-19 are available®'%!1, The most

optimistic scientists do not predict the availability of new vaccines or therapeutics
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transmission through the wearing of face masks and social distancing mandates (SDMs)
aimed at reducing contacts through school closures, restrictions of gatherings, stay-at-
home orders and the partial or full closure of nonessential businesses. Increased testing

and isolation of infected individuals and their contacts will also have had an impact"’.

These NPIs are credited with a reduction in viral transmission51?

, along with a host of
other environmental, behavioral and social determinants postulated to affect the course

of the epidemic at the state level.

Fig.1: Number of social distancing mandates by US state from 1 February 2020
to 22 September 2020.
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by NPIs with the direct benefits to human health of controlling the epidemic. Disease
control has often been operationally defined in this pandemic context as the restriction
of infections to below a specified level at which health services are not overwhelmed by

demand and the loss of human health and life is consequently minimized?°.

In the first months of the SARS-CoV-2 outbreak in the United States, states enacted
restrictive SDMs intended to reduce transmission (by limiting human-to-human
contact)’, while there was conflicting advice on the use of masks
(https://www.npr.org/sections/goatsandsoda/2020/04/10/829890635/why-there-so-
manydifferent-guidelines-for-face-masks-for-the-public/). At that early stage, relatively
simple statistical models of future risk were sufficient to capture the general patterns of
transmission?.. As different behavioral responses to SDMs emerged and, more
importantly, as some states began to relax SDMs (Fig. 1), a modeling approach that
directly quantified transmission and could be used to explore these developing
scenarios was necessary. As states varied in their actions to remove and reinstate SDMs
(Fig.1) or began to issue mandatory mask-use orders
(https://www.cnn.com/2020/06/19/us/states-face-mask-coronavirus-trnd/index.html)
amid resurgences of COVID-19
(https://www.nytimes.com/2020/07/01/world/coronavirus-updates.html), a clear need
for evidence-based assessments of the possible effect of the NPl options available to

decision-makers became apparent.

There is now growing evidence that face masks can considerably reduce the
transmission of respiratory viruses like SARS-CoV-2, thereby limiting the spread of
COVID-19 (refs. 222324), We updated a recently published review?* to generate a new
meta-analysis (Supplementary Information) of peer-reviewed studies and preprints to
assess the effectiveness of masks at preventing respiratory viral infections in humans®.

This analysis indicated a reduction in infection (from all respiratory viruses) for mask
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reported mask wearing was 49% as of 21 September 2020
(https://covidl9.healthdata.org/; Supplementary Information).

Here we provide a state-level descriptive epidemiological analysis of the introduction of
SARS-CoV-2 infection across the United States, from the first recorded case through to
21 September 2020. We use these observations to learn about epidemic progression and
thereby model the first wave of transmission using a deterministic SEIR compartmental
framework?®?’. This observed, process-based understanding of how NPIs affect
epidemiological processes is then used to make inferences about the future trajectory of
COVID-19 and how different combinations of existing NPIs might affect this course. Five
SEIR-driven scenarios, along with covariates that inform them, were then projected
through to 28 February 2021 (Methods). We use these scenarios as a sequence of
experiments to describe a range of model outputs, including Regcsive (the change over
time in the average number of secondary cases per infectious case in a population where
not everyone is susceptible?®*”?8) infections, deaths and hospital demand outcomes,
which might be expected from plausible boundaries of the policy options available the
fall and winter of 2020 (see Methods and Supplementary Information for an extended

rationale on scenario construction).

We established three boundary scenarios. First, we forecast the expected outcomes if
states continue to remove SDMs at the current pace of ‘mandate easing’, with resulting
increases in population mobility and number of person-to-person contacts. This is an
alternative scenario to the more probable situation where states are expected to
respond to an impending health crisis by reinstating some SDMs. In the second,
‘plausible reference’ scenario, we model the future progress of the pandemic assuming
that states would once again shut down social interaction and some economic activity at
a threshold for the daily death rate of 8 deaths per million population—the 90th

percentile of the observed distribution of when states previously implemented SDMs
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benefits of increased mask use in addition to the same threshold-driven reinstatement
of SDMs. In this best-case scenario model, ‘universal’ was defined as 95% of people
wearing masks in public, based on the highest observed coverage of mask use globally
(in Singapore) during the COVID-19 pandemic to date (Supplementary Information).
Two derivative scenarios were also included to assist understanding, nuance and policy
resolution around the three boundary scenarios. The first scenario, termed ‘plausible
reference + 85% mask use’, modeled less than universal mask use in public (85%) in the
presence of reinstatement of SDMs. The second was a scenario of universal mask use
(95%) in the absence of any NPIs (termed ‘mandate easing + universal mask use’). Details
and results for these additional scenarios are in the Supplementary Information. In
addition, sensitivity analyses and detailed diagnostics are provided to help users
calibrate the effects of the covariates used in the models on the scenarios discussed

(Supplementary Information).

Results

Observed COVID-19 patterns

The COVID-19 epidemic has progressed unevenly across states. Since the first death was
recorded in the United States in early February 2020, cumulative through 21 September
2020, 199,213 deaths from COVID-19 have been reported in the United States (Fig. 2); a
sixth of those (16.6%) occurred in New York alone. Washington and California issued the
first sets of state-level mandates on 11 March 2020, prohibiting gatherings of 250 people
or more in certain counties, and by 23 March 2020, all 50 states initiated some
combination of SDMs (Fig. 1). The highest levels of daily deaths at the state level between
February and September of 2020 occurred in New York, New Jersey and Texas at 998, 311
and 220 deaths per day, respectively (Fig. 3 and Extended Data Fig. 1). On 21 September
2020, the highest level of daily deaths was in Florida at 101 deaths per day. A critical
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care unit (ICU) beds in New York (estimated initial hospital ICU bed availability of 718) on
April 10 and 2,786 hospital ICU beds in New Jersey (estimated initial hospital ICU bed
availability of 466) on April 21; demand for hospital ICU beds had receded to within
initial capacity levels across the United States by 21 September 2020 (Extended Data Fig.
3). Hospital resource demands (all bed capacity) had been exceeded in the period before
21 September 2020 in three states (New York, New Jersey and Connecticut; Extended
Data Figs. 2 and 3).

Fig. 2: Cumulative deaths from 1 February 2020 to 28 February 2021.
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The inset map displays the cumulative deaths under the plausible reference scenario on 28

February 2021. A light-yellow background separates the observed and predicted part of the

time series, before and after 22 September 2020. The dashed vertical line identifies 3

November 2020. Solid lines represent boundary scenarios and dashed lines represent

derivative scenarios. Numbers are the means and Uls for the plausible reference scenario on

the highlighted dates. An asterisk indicates states with population centers exceeding 2 million

persons. Uls are shown for only the plausible reference scenario.
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Fig. 3: Daily deaths from 1 February 2020 to 28 February 2021.
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The inset map displays the daily deaths under the plausible reference scenario on 28

February 2021. A light-yellow background separates the observed and predicted part of the
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the highlighted dates. An asterisk indicates states with population centers exceeding 2 million
persons. Uls are shown for only the plausible reference scenario.

Source data

Fig. 4: Time series for values of Regecrive by US state.
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States could reach 1,053,206 (759,693-1,452,397) by 28 February 2021 (Fig. 2 and Table
1). At the state level, contributions to that death toll would be heterogeneously
distributed across the United States. Approximately one-third of the deaths projected
from 22 September 2020 to 28 February 2021 in this scenario would occur across just
three states: California (146,501 (84,828-221,194) deaths), Florida (66,943 (40,826~
96,282) deaths) and Pennsylvania (62,352 (30,318-93,164) deaths). The highest
cumulative death rates (per 100,000) from 22 September 2020 to 28 February 2021 are
predicted to occur in Rhode Island (605.1 (428.1-769.0) deaths per 100,000)),
Massachusetts (561.4 (315.8-901.3) deaths per 100,000), Connecticut (547.8 (209.3-
978.2) deaths per 100,000) and Pennsylvania (541.1 (294.7-778.3) deaths per 100,000;
Extended Data Fig. 4 and Table 1). By the US national election on 3 November 2020, a
total of five states are predicted to exceed a threshold of daily deaths of 8 deaths per
million (Fig. 3), and a total of 40 states would have an Regecrive greater than one (Fig. 4).
By 28 February 2021, a total of 45 states are predicted to exceed that threshold under
this scenario, and all states would reach an R g Of greater than one before the end of
February 2021 (Table 1 and Fig. 4). This scenario results in an estimated total of
152,775,751 (115,305,817-199,130,145) infections across the United States by the end of
February 2021 (Extended Data Fig. 5). The highest infection levels in states relative to
their population size are estimated to occur in Arizona (71.2% (61.5-80.8%) infected),
New Jersey (68.2% (47.5-84.1%) infected) and Rhode Island (65.5% (50.0-79.7%) infected;
Extended Data Fig. 6). Further results for projected hospital resource-use needs are
presented in Extended Data Figs. 2 and 3, and forecasted infections under this scenario

are available in Extended Data Figs. 7 and 8.

Table 1 Cumulative deaths from 22 September 2020 through 28 February 2021,
maximum estimated daily deaths per million, date of maximum daily deaths
and estimated Regective ON 28 February 2021 for three boundary scenarios
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cumulative death toll across the United States is forecast to be lower than that under the
mandate-easing scenario, with 511,373 (469,578-578,347) deaths by 28 February 2021
(Fig. 2). Thus, across the 45 states that are projected to exceed daily deaths of 8 deaths
per million under the mandate-easing scenario by the end of February 2021 (Table 1), the
reinstatement of SDMs under the plausible reference scenario could save 541,738
(281,283-886,373) lives. This scenario also results in 80,798,356 (47,333,280~
121,526,052) fewer estimated infections across the United States by the end of February
2021 (Extended Data Fig. 5) compared with the mandate-easing scenario, with the
highest rates of infections estimated to occur in Arizona (46.2% (38.8-55.9%) infected),
New Jersey (41.1% (35.1-50.8%) infected) and Louisiana (33.3% (29.9-37.4%) infected)
(Extended Data Fig. 6). As with the previous scenario, even with the reinstatement of
SDMs when daily deaths exceed 8 per million population, all states would reach an
Reffective greater than one before the end of the February 2021 (Fig. 4 and Table 1). Further
results for hospital resource-use needs are presented in Extended Data Figs. 2 and 3 and
forecast infections by state under this scenario are presented in Extended Data Figs. 7
and 8.

The universal mask-use scenario where the population of each state was assumed to
adopt and maintain a 95% level of mask use in public (Methods)—in addition to states
reinstating SDM if a threshold daily death rate of 8 deaths per million population was
exceeded—resulted in the lowest projected cumulative death toll across US states, with a
total of 381,798 (336,479-421,953) cumulative deaths by 28 February 2021 (Fig. 2 and
Table1). Under this scenario, on 3 November 2020, no states will have exceeded a daily
death rate of 8 deaths per million (Fig. 3), although 47 states are still estimated to exceed
an Regecrive 0f 1.0 at some point in the projected period, and three states would have an
Reffective greater than 1.0 on 28 February 2021 (Fig. 4). Through the end of the February
2021, the daily death rate is forecast to exceed 8 deaths per million in nine states

(California, Colorado, Massachusetts, New Jersey, New Mexico, North Carolina, North
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with threshold-driven implementation of SDM results in 17,408,352 (11,278,442~
23,291,371) fewer estimated infections across the United States by the end of February
2021 compared with the plausible reference scenario, and 98,106,708 (59,908,817~
142,318,907) fewer estimated infections compared to the mandate-easing scenario
(Extended DataFig. 5). The highest infection rates under the 95% mask-use scenario are
estimated to occur in Arizona (38.1% (28.0-43.3%) infected), New Jersey (35.7% (30.2-
41.0%) infected) and Delaware (28.2% (23.3-31.1%) infected) (Extended Data Fig. 6).
Further results for hospital resource-use needs are presented in Extended Data Figs. 2
and 3, and forecast infections under this scenario are available in Extended Data Figs. 7
and 8.

To provide additional policy nuance to the three boundary scenarios, we also examined
plausible reference + 85% mask use and mandate-easing + universal mask-use scenarios
(Figs. 2-4, Extended Data Figs. 1 and 4-8 and Supplementary Information). In brief, the
plausible reference + 85% mask-use scenario saves a considerable number of lives at the
national level (95,814 (60,731-133,077) over and above the reference scenario, but is not
as effective as the plausible reference + universal mask-use scenario. Although not
surprising, this does help to confirm that any additional coverage that can be achieved
through mask use will save lives. The mandate-easing + universal mask-use scenario
reveals substantial lives saved (20,936 (0-102,507)) over the plausible reference
scenario, even in the absence of reinstatement of SDMs at the daily threshold of 8 deaths
per one million population, underscoring the potential effects that increased levels of
mask adoption could have while minimizing the deleterious economic repercussions of
other NPlIs.

Two out-of-sample (OOS) model assessments were conducted for two different time
intervals of the modeling period to investigate the strength of evidence behind each of

the covariate drivers of SARS-CoV-2 transmission intensity. Full details of these
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indicate that over some time frames, pneumonia mortality seasonality was either the
most or least useful covariate, despite in-sample tests having consistently shown this to
be animportant predictor. Since pneumonia seasonality is one of the leading covariates
driving expected increases in COVID-19 deaths in the fall and winter, it isimportant to be
aware of this uncertainty when assessing the forecasts. It is critical to note, however, that
even when we completely remove this covariate from our model, sensitivity analyses
show aforecast of over 100,000 deaths from COVID-19 by the end of winter (101,615
(81,479-126,295) additional deaths; Supplementary Information). Since this covariate
complexity makes it difficult to generalize the effects of this uncertainty, we provide
extensive diagnostics for the covariate relationships in each of the states with examples

of how to interpret these findings (Supplementary Information).

Model performance

The models presented here have been evaluated for OOS predictive validity using
standard tests and metrics in an ongoing fashion and in a publicly available framework?2.
These SEIR models have consistently produced among the most accurate forecasts
observed across models compared?'. For example, for models released in June, the
Institute for Health Metrics and Evaluation (IHME) SEIR model had the lowest median
absolute percentage error (MAPE) at 10 weeks of forecasting at 20.2%, compared to
32.6% across models. We have included new sets of model and covariate diagnostics with
worked descriptions for the most populous states (Supplementary Information and
Supplementary Data 1-4) for transparent evaluation of our model performance. We
emphasize that these are forecasts of possible futures, which are subject to many model

assumptions and sources of data variability.

Discussion
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and universal mask-use scenarios—to help tframe and inform a national discussion on
what actions could be taken during the fall of 2020 and the public health, economic and
political influences that these decisions will have for the rest of the winter (here defined
as the end of February 2021). To help us understand the policy nuances of these
boundary scenarios, two derivative scenarios (plausible reference + 85% mask use and
mandate easing + universal mask use) were also explored. In addition, selected
sensitivity analyses were conducted for the covariates used in the models, so that their

influence could be better understood.

Under all scenarios evaluated here, the United States is likely to face a continued public
health challenge from the COVID-19 pandemic through 28 February 2021 and beyond,
with populous states in particular potentially facing high levels of illness, deaths and ICU
demands as a result of the disease. The implementation of SDMs as soon as individual
states reach a threshold of 8 daily deaths per million could dramatically ameliorate the
effects of the disease; achieving near-universal mask use could delay, or in many states,
possibly prevent, this threshold from being reached and has the potential to save the
most lives while minimizing damage to the economy. National and state-level decision-
makers can use these forecasts of the potential health benefits of available NPIs,
alongside considerations of economic and other social costs, to make more informed
decisions on how to confront the COVID-19 pandemic at the local level. Our findings
indicate that universal mask use, a relatively affordable and low-impact intervention, has
the potential to serve as a priority life-saving strategy in all US states. Our derivative
scenarios suggest that this likely remains true at sub-universal levels of mask coverage

and at universal mask coverage in the absence of any other NPIs.

New epidemics, resurgences and second waves are not inevitable. Several countries,
such as South Korea, Germany and New Zealand have sustained reductions in COVID-19

cases over time (https://covidl9.healthdata.org/). Early indications that seasonality may
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COVID-19 seasonality will follow the pattern of related coronaviruses>? and parallel that
of pneumonia seasonality, the sometimes strong associations observed in these
forecasts indicate that increased government vigilance is prudent. Moreover, given the
potential sensitivity of the model to effects of seasonality, a substantial winter effect
cannot be ruled out. This effect would be against a background of more widespread and
prevalent COVID-19 infection than experienced in the first wave.

Mask use has emerged as a contentious issue in the United States with only 49% of US
residents reporting that they ‘always’ wear a mask in public as of 21 September 2020
(https://covid19.healthdata.org/). Regardless, toward the end of 2020, masks could help
to contain a second wave of resurgence while reducing the need for frequent and
widespread implementation of SDMs. Although 95% mask use across the population
may seem a high threshold to achieve and maintain, on a neighborhood scale this level
has already been observed in areas of New York
(https://www.nytimes.com/2020/08/20/nyregion/nyc-face-masks.html); and on a state
level, reported mask use has exceeded 60% in Virginia, Florida and California (see
Supplementary Information for related methods). In countries where mask use has been
widely adopted, such as Singapore, South Korea, Hong Kong, Japan and Iceland among
others, transmission has declined and, in some cases, halted
(https://covid19.healthdata.org/). These examples serve as additional natural
experiments>> of the likely effects of masks and support the assumptions and findings
from the universal mask-use scenario in our study. The potential life-saving benefit of
increasing mask use in the coming fall and winter cannot be overstated. It is likely that
US residents will need to choose between higher levels of mask use or risk the frequent
redeployment of more stringent and economically damaging SDMs; or, in the absence of
either measure, face a reality of a rising death toll>*. Longer term, the future of COVID-19
in the United States will be determined by the deployment of an efficacious vaccine and

the evolution of herd immunity.
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exercise is that it will be constrained by data (disease and relevant covariates), the model
of understanding developed and the length of time available to the model to learn/train
the important dynamics. We have therefore tried to benchmark our model against
alternative models of the COVID-19 pandemic and fully document our predictive
performance with a range of measures?.. In addition, we have provided all the data and
model code to enable full reproducibility and increased transparency, provided
sensitivity analyses to some of our core assumptions; and presented a range of likely
futures>® in the form of mandate-easing, plausible reference and universal mask-use
scenarios (as well as two derivative scenarios thereof) for decision-makers to review. In
addition, triangulation of other outputs of the SEIR model, such as the proportion of the
population that are affected, are also provided and tested against independent data, in
this case seroprevalence surveys (Extended Data Fig. 9). Finally, because uncertainty
compounds with increased distance into the future predicted, the data, model and its
assumptions will be iteratively updated as the pandemic continues to unfold
(https://www.latimes.com/opinion/story/2020-07-10/covid-forecast-deaths-ihme-

washington/).

We wish to reiterate to decision-makers that there are a multitude of limitations in any
modeling study of this type2¢27; an extended description of the limitations specific to
this study is provided (Methods). Specifically, (1) these models are approximations of
real-world scenarios, and we have simplified many aspects of the epidemiological
process of disease transmission to make these models computationally feasible; (2)
these models are driven strongly by mortality data with all of its fidelity and recording
imperfections; (3) these models are also informed by a wealth of other data types that
each have differential availability, as well as detection and measurement bias issues for
which we can never fully calibrate; (4) these models make particular assumptions about
covariates, including seasonality, that while evidence-based and explicitly stated, are

subject to sensitivity analyses because their effects could be substantial; and (5) our
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publicly released model comparison framework?! supports the robust, iterative and
objective evaluation of our modeling approach. This is especially valuable as the
complexities of the pandemic response require that our modeling efforts remain agile to
epidemiological and societal developments and that we continue to reevaluate and post
updates weekly (https://covidl9.healthdata.org/). Finally, it is especially important for
decision-makers that we emphasize that we are not forecasting a future, but rather a
range of outcomes that we believe are more probable given the scenarios tested, based
on the data observed so far and our model assumptions. These forecasts are best
considered as helpful guides, rather than definitive maps.

Methods

Our analysis strategy supports two main and interconnected objectives: (1) to generate
forecasts of COVID-19 deaths, infections and hospital resource needs for all US states;
and (2) to explore alternative scenarios on the basis of changes in state-enforced SDMs
or population-level mask use. The modeling approach to achieve this is summarized in
the Supplementary Information and can be divided into four stages: (1) identification
and processing of COVID-19 data, (2) exploration and selection of key drivers or
covariates, (3) modeling deaths and cases across three boundary scenarios of SDMs in
US states using an SEIR framework and (4) modeling health service utilization as a
function of forecast infections and deaths within those scenarios. This study complies
with the Guidelines for Accurate and Transparent Health Estimates Reporting statement

(Supplementary Information).

Data identification and processing

IHME forecasts include data from local and national governments, hospital networks

and associations, the World Health Organization, third-party aggregators and a range of
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University data repository; we supplement and correct this dataset as needed to
improve the accuracy of our projections and adjust for reporting-day biases
(Supplementary Information). Testing data are obtained from Our World in Data
(https://ourworldindata.org/), The COVID Tracking Project (https://covidtracking.com/)
and supplemented with data from additional government websites (Supplementary
Information). Social distancing data are obtained from a number of different official and
open sources, which vary by state (Supplementary Information). Mobility data are
obtained from Facebook Data for Good (https://dataforgood.fb.com/docs/covid19/),
Google (https://www.google.com/covid19/mobility/), SafeGraph
(https://www.safegraph.com/dashboard/covid19-shelter-in-place/) and Descartes Labs
(https://www.descarteslabs.com/mobility/; Supplementary Information). Mask-use data
are obtained from the Facebook Global Symptom Survey (in collaboration with the
University of Maryland Social Data Science Center), the Kaiser Family Foundation,
YouGov COVID-19 Behavioural Tracker survey (https://today.yougov.com/covid-19/) and
PREMISE (https://www.premise.com/covid-19/; Supplementary Information). Specific
sources for data on licensed bed and ICU capacity and average annual utilization in the

United States are detailed in the Supplementary Information.

Before modeling, observed cumulative deaths are smoothed using a spline-based
smoothing algorithm with randomly placed knots>’. Uncertainty is derived from
bootstrapping and resampling of the observed deaths. The time series of case data is
used as a leading indicator of death based on an infection fatality ratio (IFR) and alag
frominfection to death. These smoothed estimates of observed deaths by location are
then used to create estimated infections based on an age distribution of infections and
on age-specific IFRs. The age-specific infections were collapsed into total infections by
day and state and used as data inputs in the SEIR model. Detailed descriptions of data

smoothing and transformation steps are provided in the Supplementary Information.
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specifically, S represents the contact rate multiplied by the probability of transmission
per contact. Covariates were evaluated on the basis of biological plausibility and on the
impact on the results of the SEIR model. Given limited empirical evidence of population-
level predictors of SARS-CoV-2 transmission, biologically plausible predictors of
pneumonia such as population density (percentage of the population living in areas with
more than 1,000 individuals per square kilometer), tobacco smoking prevalence,
population-weighted elevation, lower respiratory infection mortality rate and
particulate matter air pollution were considered. These covariates are representative at
a population level and are time invariant. Location-specific estimates for these
covariates are derived from the Global Burden of Disease Study 2019 (refs. 38:3%40),
Time-varying covariates include pneumonia excess mortality seasonality, diagnostic
tests administered per capita, population-level mobility and personal mask use. These

are described below.

Pneumonia seasonality

We used weekly pneumonia mortality data from the National Center for Health Statistics
Mortality Surveillance System (https://gis.cdc.gov/grasp/fluview/mortality.html) from
2013 to 2019 by US state. Pneumonia deaths included all deaths classified by the full
range of the International Classification of Disease codes in J12-J18.9. We pooled data
over available years for each state and found the weekly deviation from the annual, state-
specific mean mortality due to pneumonia. We then fit a seasonal pattern using a
Bayesian meta-regression model with a flexible spline and assumed annual periodicity
(Supplementary Information). For locations outside the United States, we used vital
registration data where available. Locations without vital registration data had weekly
pneumonia seasonality predicted based on latitude from a model pooling all available

data (Supplementary Information).
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of testing were negatively associated with SARS-CoV-2 transmission. Our primary
sources for US testing data were compiled by the COVID Tracking Project
(Supplementary Information). Unless testing data existed before the first confirmed
case in a state, we assumed that testing was non zero after the date of the first confirmed
case. Before producing predictions of testing per capita, we smoothed the input data by
using the same smoothing algorithm used for smoothing daily death data before
modeling (previously described). Testing per capita projections for unobserved future
days were based on linearly extrapolating the mean day-over-day difference in daily tests
per capita for each location. We put an upper limit on diagnostic tests per capita of 500
per 100,000 based on the highest observed rates in June 2020.

Social distancing mandates

SDMs were not used as direct covariates in the transmission model. Rather, SDMs were
used to predict population mobility (see below), which was subsequently used as a
covariate in the transmission model. We collected the dates of state-issued mandates
enforcing social distancing, as well as the planned or actual removal of these mandates.
The measures that we included in our model were: (1) severe travel restrictions, (2)
closing of public educational facilities, (3) closure of nonessential businesses, (4) stay-at-
home orders and (5) restrictions on gathering size. Generally, these came from state

government official orders or press releases.

To determine the expected change in mobility due to SDMs, we used a Bayesian,
hierarchical meta-regression model with random effects by location on the composite
mobility indicator to estimate the effects of social distancing policies on changes in

mobility (Supplementary Information).

Mobility
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capturing mobility, so before constructing a composite mobility indicator, we
standardized these different data sources (Supplementary Information). Briefly, this
firstinvolved determining the change in a baseline level of mobility for each location by
data source. Then, we determined a location-specific median ratio of change in mobility
for each pairwise comparison of mobility sources, using Google as areference and
adjusting the other sources by that ratio. The time series for mobility was estimated
using a Gaussian process regression model using the standardized data sources to get a

composite indicator for change in mobility for each location day.

We calculated the residuals between our predicted composite mobility time series and
input composite time series, and then applied a first-order random walk to the residuals.
The random walk was used to predict residuals from 1January 2020 to 1January 2021,
which were then added to the mobility predictions to produce a final time series with
uncertainty: ‘past’ changes in mobility from 1 January 2020 to 28 September 2020 and
projected mobility from 28 September 2020 to 1January 2021.

Masks

We performed a meta-analysis of 40 peer-reviewed scientific studies in an assessment of
mask effectiveness for preventing respiratory viral infections (Supplementary
Information). The studies were extracted from a preprint publication?*. In addition, we
considered all articles from a second meta-analysis?> and one supplemental
publication*!. These studies included both persons working in health care and the
general population, especially family members of those with known infections. The
studies indicate overall reductions in infections due to masks preventing exhalation of
respiratory droplets containing viruses, as well as some prevention of inhalation by
those uninfected. The resulting meta-regression calculated log-transformed relative
risks and corresponding log-transformed standard errors based on raw counts and used

a continuity correction for studies with zero counts in the raw data (0.001). We included
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We used MR-BRT (meta-regression, Bayesian, regularized and trimmed), a meta-
regression tool developed at the Institute for Health Metrics and Evaluation
(Supplementary Information), to perform a meta-analysis that considered the various
characteristics of each study. We accounted for between-study heterogeneity and
quantified remaining between-study heterogeneity into the width of the Ul. We also
performed various sensitivity analyses to verify the robustness of the modeled
estimates and found that the estimate of the effectiveness of mask use did not change
significantly when we explored four alternative analyses, including changing the
continuity correction assumption, using odds ratio versus relative risk from published
studies, using a fixed-effects versus a mixed-effects model and including studies without

information on covariates.

We estimated the proportion of people who self-reported always wearing a face mask
when outside in public for both US and global locations using data from PREMISE (US),
the Kaiser Family Foundation (US), YouGov (non-US) and Facebook (non-US) surveys
(Supplementary Information). We used the same smoothing model as for COVID-19
deaths and testing per capita to produce estimates of observed mask use. This
smoothing process averaged each data point with its neighbors. The level of mask use
starting on 21 September 2020 (the last day of processed and analyzed data) was
assumed to be flat. Among states without state-specific data, a within-the-US regional

average was used.

Deterministic modeling framework

Model specification is summarized in a schematic with additional details provided in the
Supplementary Information. To fit and predict disease transmission dynamics, we
include a SEIR component in our multistage model. In particular, the population of each

location is tracked through the following system of differential equations:
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{{dt}} =\gamma 11 1-\gamma 2I 2\\\frac{{dR}}{{dt}} =\gamma 2I 2\end{array}$$

where a represents a mixing coefficient to account for imperfect mixing within each
location, gis the rate at which infected individuals become infectious, y; is the rate at
which infectious people transition out of the presymptomatic phase and y, is the rate at
which individuals recover. This model does not distinguish between symptomatic and
asymptomatic infections but has two infectious compartments (/; and /,) to allow for
interventions that would avoid focus on those who could not be symptomatic; /; is thus

the presymptomatic compartment.

Using the next-generation matrix approach, we can directly calculate both the basic
reproductive number under control (R.(¢)) and the effective reproductive number

(Reffective(t)) as (Supplementary Information):

\(R_c\left( t \right) =\alpha \times \beta \left( t \right) \times \left( {I_ 1\left(t\right) +
I 2\left( t \right)} \right)*{\alpha - 1} \times \left( {\frac{1}{{\gamma _1}} + \frac{1}
{{\gamma _2}}} \right)\) and

\(R_{effective}\left( t \right) =R _c\left(t\right) \times \frac{{S\left( t \right)}}{N}\)

By allowing (¢) to vary in time, our model is able to account for increases in
transmission intensity as human behavior shifts over time (for example, changes in
mobility, adding or removing SDMs and changes in population mask use). Briefly, we
combine data on cases (correcting for trends in testing), hospitalizations and deaths

into a distribution of trends in daily deaths.

To fit this model, we resampled 1,000 draws of daily deaths from this distribution for

each state (Supplementary Information). Using an estimated IFR by age and the
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come into contact and infect susceptible individuals (denoted as (t)) as a function of a
number of predictors that affect transmission. Our modeling approach acts across the
overall population (that is, no assumed age structure for transmission dynamics), and
each location is modeled independently of the others (that is, we do not account for

potential movement between locations).

We detail the SEIR fitting algorithm in the Supplementary Information. Briefly, for each
draw, we first fit a smooth curve to our estimates of daily new infections. Then, sampling
V2,0 and a from defined ranges from the literature (Supplementary Information) and
using \(\gamma _1=\frac{1}{2}\), we then sequentially fit the E, /;, I, and R components in

the past. We then algebraically solve the above system of differential equations for ().

The next stage of our model fit relationships between past changes in 5(t) and covariates
described above: mobility, testing, masks, pneumonia seasonality and others. The time-
varying covariates were forecast from 28 September to 28 February 2021
(Supplementary Information). The fitted regression was then used to estimate future
transmission intensity B,.4(t). The final future transmission intensity is then an adjusted
version of Byq(t) based on the average fit over the recent past (where the window of

averaging varies by draw from 2 to 4 weeks; Supplementary Information).

Finally, we used the future estimated transmission intensity to predict future
transmission (using the same parameter values for all other SEIR parameters for each
draw). In areversal of the translation of deaths into infections, we then used the
estimated daily new infections to calculate estimated daily deaths (again using the
location-specific IFR). We also used the estimated trajectories of each SEIR

compartment to calculate Rc and Regective-
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Forecasts/scenarios

Policy responses to COVID-19 can be supported by the evaluation of the impacts of
various scenarios of those options, against a background of a business-as-usual
assumption, to explore fully the potential impact of policy levers available. Additional

details are available in the Supplementary Information.

We estimate the trajectory of the epidemic by state under a mandate-easing scenario
that models what would happen in each state if the current pattern of easing SDMs
continues and new mandates are not implemented. This should be thought of as a worst-
case scenario where, regardless of how high the daily death rate becomes, SDMs will not
be reintroduced and behavior (including population mobility and mask use) will not
vary before 28 February 2021. In locations where the number of cases is rising, this leads

to very high numbers of cases by the end of the year.

As amore plausible scenario, we use the observed experience from the first phase of the
pandemic to predict the likely response of state and local governments during the
second phase. This plausible reference scenario assumes that in each location the trend
of easing SDMs will continue at its current trajectory until the daily death rate reaches a
threshold of 8 deaths per million. If the daily death rate in alocation exceeds that
threshold, we assume that SDMs will be reintroduced for a 6-week period. The choice of
threshold (of a daily rate of 8 deaths per million) represents the 90th percentile of the
distribution of daily death rate at which US states implemented their mandates during
the first months of the COVID-19 pandemic. We selected the 90th percentile rather than
the 50th percentile to capture an anticipated increased reluctance from governments to
reinstate mandates because of the economic effects of the first set of mandates. In
locations that do not exceed the threshold of a daily death rate of 8 per million, the

projection is based on the covariates in the model and the forecasts for these to 28
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The scenario of universal mask use models what would happen if 95% of the population
in each state always wore a mask when they were in public. This value was chosen to
represent the highest observed rate of mask use in the world so far during the COVID-19
pandemic (Supplementary Information). In this scenario, we also assumed that if the
daily death rate in a state exceeds 8 deaths per million, SDMs will be reintroduced for a

6-week period.

Two additional, derivative scenarios were included to assist understanding and policy
resolution of these main framework scenarios: a less comprehensive mask-wearing
scenario of 85% public use of masks and a scenario of universal mask use in the absence
of any additional NPIs. The less comprehensive mask-wearing scenario evaluated what
would happen if 85% of the population in each state always wore a mask when they were
in public. As with the universal mask-use scenario, we also assumed that if the daily
death rate in a state exceeds 8 deaths per million, SDMs will be reintroduced for a 6-week
period. For completeness, we also evaluated universal mask use by 95% of the
population in a scenario that assumes no implementation of other NPIs at any threshold
value of daily deaths—the results from this scenario, which did not differ notably from
the more probable version where states respond to rising numbers of daily COVID-19
deaths by reinstating SDM, are provided in the Supplementary Information and Figs. 2-
4. SEIR model vetting plots for scenarios of 95% mask use with mandates
(Supplementary Data 1), 95% mask use without mandates (Supplementary Data 2) and
85% mask use with mandates (Supplementary Data 3), as well as detailed regression
diagnostics (Supplementary Data 4) and the spatial distribution of select covariates
(Supplementary Data 5) are available in the Supporting Information. All scenarios
assume an increase in mobility associated with the opening of schools across the

country.
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available COVID-19 mortality forecasting models in a publicly available framework?'.
The IHME SEIR model described here has consistently demonstrated high accuracy, as
measured by alow MAPE, when compared to models from other groups. For example,
among models released in June, at 10 weeks of extrapolation, the IHME SEIR model had
the lowest MAPE of any observed forecasting group at 20.2%, compared to an average of
32.6% across groups. Numerous other aspects of predictive performance are assessed in

our publicly available framework?..

The increasing number of population-based serology surveys conducted also provides a
unique opportunity to cross-validate our forecasts with modeled epidemiological
outcomes. In Extended Data Fig. 9, we compare these serology surveys (such as the
Spanish ENE-COVID study*2) to our estimated population seropositivity, time indexed to
the date that the survey was conducted. In general, across the varied locations that have
beenreported globally, we note a high degree of agreement between the estimated and
surveyed seropositivity. As more serology studies are conducted and published,
especially in the United States, this will allow an ongoing and iterative assessment of
model validity. Two sensitivity analyses were conducted; the first assessed the
importance of specific model assumptions on OOS predictive validity, while the second
assessed the robustness of our conclusions to these same model assumptions

(Supplementary Information).

Limitations

Epidemics progress based on complex nonlinear and dynamic biological and social
processes that are difficult to observe directly and at scale. Mechanistic models of
epidemics, formulated either as ordinary differential equations or as individual-based
simulation models, are a useful tool for conceptualizing, analyzing or forecasting the

time course of epidemics. In the COVID-19 epidemic, effective policies and the responses
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there are limitations on the quality and availability of the data used to inform it and the
simplifications chosen in model specification. It is unreasonable to expect any model to
do everything well, so each model makes compromises to serve a purpose, while

maintaining computational tractability.

One of the largest determinants of the quality of a model is the corresponding quality of
the input data. Our model is anchored to daily COVID-19-related deaths, as opposed to
daily COVID-19 case counts, due to the assumption that death counts are a less biased
estimate of true COVID-19-related deaths than COVID-19 case counts are of the true
number of SARS-CoV-2 infections. Numerous biases such as treatment-seeking
behavior, testing protocols (such as only testing those who have traveled abroad) and
differential access to care greatly influence the utility of case count data. Moreover,
there is growing evidence that inapparent and asymptomatic individuals are infectious,
as well as individuals who eventually become symptomatic and are infectious before the
onset of any symptoms. As such, our primary input data for our model are counts of
deaths; death data can likewise be fallible, however, and where available, we combine
death data, case data and hospitalization data to estimate COVID-19 deaths.

Beyond the basic input data, a large number of other data sources with their own
potential biases are incorporated into our model. Testing, mobility and mask use are all
imperfectly measured and may or may not be representative of the practices of those
that are susceptible and/or infectious. Moreover, any forecast of the patterns of these
covariates is associated with a large number of assumptions (Supplementary
Information), and as such, care must be taken in the interpretation of estimates farther
into the future, as the uncertainty associated with the numerous submodels that go into
these estimates increases in time. Moreover, although our time-invariant covariates are
simpler to estimate, some of them may be more associated with disease outcome than

transmission potential, and thus their impact on the model may be more muted.
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example, we assume a well-mixed population). It is clear that there are large, super-
spreader-like events that have occurred throughout the COVID-19 pandemic, and our
current model is unable to fully capture these dynamics. Another important assumption
to note is that of the relationship between pneumonia seasonality and SARS-CoV-2
seasonality. To date, across both the Northern and Southern Hemispheres, thereis a
strong association between COVID-19 cases and deaths and general seasonal patterns of
pneumonia deaths (Supplementary Information). Our forecasts to the end of February
2021 are immensely influenced by the assumption that this relationship will maintain
throughout the year and that SARS-CoV-2 seasonality will be well approximated by
pneumonia seasonality. While we assess this assumption to the extent possible
(Supplementary Information), we have not yet experienced a full year of SARS-CoV-2
transmission, and as such cannot yet know if this assumption is valid. Additionally, our
model attempts to account for some of the associated uncertainties in the process but
does not fully capture all levels of uncertainty. Future iterations should track
uncertainties that arise from more complex processes such as demographic
stochasticity. There is also uncertainty (and unidentifiability) surrounding a number of
the parameters of the transmission model. Here we have chosen to incorporate this lack
of knowledge by drawing key transmission parameters from plausible distributions and
then presenting the average result across these potential realities. As more information

becomes available, we hope to tune these parameters to each location in turn.

Finally, the model presented herein is not the first model our team has developed to
predict current and future transmission of SARS-CoV-2. As the outbreak has progressed,
we have attempted to adapt our modeling framework to both the changing
epidemiological landscape, as well as the increase in data that could be useful to inform
a model. Changes in the dynamics of the outbreak overwhelmed both the initial purpose
and some key assumptions of our first model, requiring evolution in our approach.

While the current SEIR formulation is a more flexible framework (and thus less likely to
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but resolving our model at finer spatial scales, as well as accounting for differential
exposure and treatment rates across sexes and races are other dimensions of
transmission modeling that we currently do not account for but expect will be necessary
additions in the coming months. As we have done before, we will continually adapt,

update and improve our model based on need and predictive validity.

Reporting Summary

Further information on research design is available in the Nature Research Reporting
Summary linked to this article.

Data availability

Results specific to the model run for this publication are accessible for each state
(http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-2020-
2021). The estimates viewable in our online tool (https://covid19.healthdata.org/) will be
iteratively updated as new data are incorporated and will ultimately supersede the
results in this paper. The findings of this study are supported by data available in public
online repositories and data that are available upon request from the data provider; non-
publicly available data were used under license for the current study but can be made
available with permission of the data provider; contact information is provided where
applicable. Data citations for COVID-19 metrics (cases, hospitalizations and deaths)
include the COVID-19 Repository by the Center for Systems Science and Engineering at
Johns Hopkins University (cases and deaths;
https://github.com/CSSEGISandData/COVID-19) and the COVID Tracking Project
(hospitalizations; https://covidtracking.com/data/api). State-level datasets were
replaced in the following locations, using the following sources: Alaska hospitalizations

from https://coronavirus-response-alaska-dhss.hub.arcgis.com/; Delaware cases and
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https://dph.illinois.gov/covid19/covid19-statistics; Indiana cases and deaths from
https://www.coronavirus.in.gov/2393.htm; Kentucky cases and deaths from
https://govstatus.egov.com/kycovid19; Maryland cases and deaths from
https://coronavirus.maryland.gov/; Nebraska cases and deaths from
http://dhhs.ne.gov/Pages/Coronavirus.aspx; New York cases and deaths from
https://github.com/nychealth/coronavirus-data and
https://covidl9tracker.health.ny.gov/views/NYS-COVID19-Tracker/NYSDOHCOVID-
19Tracker-Map?%3Aembed=yes&%3Atoolbar=no&%3Atabs=n; North Carolina cases and
deaths from https://covid19.ncdhhs.gov/dashboard; and Washington cases,
hospitalizations and deaths from
https://www.doh.wa.gov/Emergencies/COVID19/DataDashboard. The timing of
mandate implementation for each state was derived from a preprint study*3 and
supplemented with ad hoc additional resources available at
http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-2020-
2021. The mobility covariate was constructed using data from Google Community
Mobility Reports (https://www.google.com/covid19/mobility/); Facebook Data for Good
Disease Prevention Maps (https://dataforgood.fb.com/tools/disease-prevention-maps/;
with access coordinated via diseaseprevmaps@fb.com); SafeGraph Shelter in Place
Index (https://www.safegraph.com/dashboard/covidl9-shelter-in-place?s=US&d=09-13-
2020&t=counties&m=index; with access coordinated through the SafeGraph COVID-19
Data Consortium via https://www.safegraph.com/covid-19-data-consortium/); and
Descartes Labs (https://github.com/descarteslabs/DL-COVID-19). The testing covariate
was constructed using data from the COVID Tracking Project
(https://covidtracking.com/data/api/). State-level datasets for the testing covariate were
replaced in Washington, using
https://www.doh.wa.gov/Emergencies/COVID19/DataDashboard. Mask-use data were
obtained from Premise COVID-19 Global Impact Survey (https://www.premise.com/the-
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admin-C19survey-fb@umd.edu); and the YouGov COVID-19 Behavioural Tracker Survey
(https://github.com/YouGov-Data/covid-19-tracker). Pneumonia seasonality estimates,
particulate matter air pollution estimates, lower respiratory infection country-specific
mortality rate estimates and smoking estimates were generated by the Global Burden of
Disease study (http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-
scenarios-2020-2021/). Altitude was sourced from the National Oceanic and
Atmospheric Administration National Centers for Environmental Information Global
Land One-km Base Elevation Project
(https://www.ngdc.noaa.gov/mgg/topo/globe.html) and population data were obtained
from WorldPop Population Counts (https://www.worldpop.org/project/list/). These
sources are further detailed in the Supplementary Information*##546,47,48,49,50,51
Source data are provided with this paper.

Code availability

All code used for these analyses was custom created for this study and is publicly
available online (https://github.com/ihmeuw/covid-model-seiir-pipeline/ and
https://github.com/ihmeuw/covid-model-deaths-spline/).

Analyses were carried out using R version 3.6.1, Python 3.8 and R-INLA version
20.01.29.9000. All maps presented in this study are generated by the authors using
RStudio (R Version 3.6.3) and ArcGIS Desktop 10.6, and no permissions were required to
publish them. Administrative boundaries were retrieved from the Database of Global
Administrative Areas. Land cover was retrieved from the online Data Pool, courtesy of
the NASA Earth Observing System Data and Information System Land Processes
Distributed Active Archive Center, United States Geological Survey Earth Resources

Observation and Science Center.
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Extended Data Fig. 1 Estimated daily COVID-19 death rate (per 100,000
population) by state for all five scenarios.
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dashed vertical line identifies 03 November 2020. Numbers are the means and
uncertainty interval (UI) for the plausible reference scenario on dates highlighted.

Source data

Extended Data Fig. 2 Estimated total hospital beds needed for COVID-19
patients by state from 01 February 2020 to 28 February, 2021, under the
plausible reference scenario.

The inset map displays the estimated peak number of all COVID-19 beds above capacity
by state between 22 September 2020 and 28 February 2021. The light yellow background
separates the observed and predicted part of the time series, before and after 21
September 2020. The dashed vertical line identifies 03 November 2020. Numbers are
the means and uncertainty interval (UI) for the plausible reference scenario on dates
highlighted.

Source data

Extended Data Fig. 3 Estimated total ICU beds needed for COVID-19 patients
by state from 01 February 2020 to 28 February 2021, under the plausible
reference scenario.

The inset map displays the estimated peak number of all ICU COVID-19 beds above
capacity by state between 22 September 2020 and 28 February 2021. The light yellow
background separates the observed and predicted part of the time series, before and
after 21 September 2020. The dashed vertical line identifies 03 November 2020.
Numbers are the means and uncertainty interval (UI) for the plausible reference
scenario on dates highlighted.

Source data

Extended Data Fig. 4 Estimated cumulative deaths from COVID-19 per
100,000 population from 01 February 2020 to 28 February 2021, by state,
for all five scenarios.
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September 2020. The dashed vertical line identifies 03 November 2020. Numbers are
the means and uncertainty interval (UI) for the plausible reference scenario on dates
highlighted. The Uls are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 5 Estimated cumulative infections from SARS-CoV-2 from
01 February 2020 to 28 February 2021, by state, for all five scenarios.

The inset map displays the estimated cumulative infections under the plausible
reference scenario on 28 February 2021. The light yellow background separates the
observed and predicted part of the time series, before and after 21 September 2020. The
dashed vertical line identifies 03 November 2020. Numbers are the means and
uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The
Uls are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 6 Estimated cumulative SARS-CoV-2 infection rate (per
100,000 population) by state, for all five scenarios.

The inset map displays the estimated cumulative infections from COVID-19 per 100,000
population by state on 28 February 2021. The light yellow background separates the
observed and predicted part of the time series, before and after 21 September 2020. The
dashed vertical line identifies 03 November 2020. Numbers are the means and
uncertainty interval (Ul) for the plausible reference scenario on dates highlighted. The
Uls are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 7 Estimated daily infections from SARS-CoV-2 from 01
February 2020 to 28 February 2021 by state, for all five scenarios.
The inset map displays the estimated daily infections under the plausible reference

scenario on 28 February 2021. The light yellow background separates the observed and
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only for the plausible reference scenario.

Source data

Extended Data Fig. 8 Estimated daily SARS-CoV-2 infection rate (per 100,000
population) by state, for all five scenarios.

The inset map displays the estimated daily infections from COVID-19 per 100,000
population by state on 28 February 2021. The light yellow background separates the
observed and predicted part of the time series, before and after 21 September 2020. The
dashed vertical line identifies 03 November 2020. Numbers are the means and
uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The
Uls are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 9 Modeled SARS-CoV-2 infection prediction totals
compared with survey-derived seroprevalence rates in select locations.
Modeled SARS-CoV-2 infection prediction totals compared with survey-derived
seroprevalence rates in select locations globally. The scatter plots show locations colour
coded by country; horizontal bars are the 95% confidence interval in the modeled
estimates. The inset violin plot of the measured seropositivity data show the
predominantly low values seropositivity estimates (below 5%) recorded in this global
sample.

Source data

Supplementary information

Supplementary Information
Supplementary Text on data and methods, Supplementary Model descriptions,

Supplementary Figs. 1-12 and Supplementary Tables 1-12.
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Appendix 1: SEIR model vetting plots for the scenario of 95% mask use with mandates.

Supplementary Data 2
Appendix 2: SEIR model vetting plots for the scenario of 95% mask use without

mandates.

Supplementary Data3
Appendix 3: SEIR model vetting plots for the scenario of 85% mask use with mandates.

Supplementary Data 4
Appendix 4: detailed SEIR regression diagnostics.

Supplementary Data 5
Appendix 5: spatial distribution of selected covariates.
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Source Data Extended Data Fig. 1


https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM2_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM3_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM4_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM5_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM6_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM7_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM8_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM9_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM10_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM11_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM12_ESM.xlsx
https://www.nature.com/articles/s41591-020-1132-9.pdf

Statistical source data.

Source Data Extended Data Fig. 3
Statistical source data.

Source Data Extended Data Fig. 4
Statistical source data.

Source Data Extended Data Fig. 5
Statistical source data.

Source Data Extended Data Fig. 6
Statistical source data.

Source Data Extended Data Fig. 7
Statistical source data.

Source Data Extended Data Fig. 8
Statistical source data.

Source Data Extended Data Fig. 9
Statistical source data.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made. The images or other third party material in this article are


https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM13_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM14_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM15_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM16_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM17_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM18_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM19_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1132-9/MediaObjects/41591_2020_1132_MOESM20_ESM.xlsx
https://www.nature.com/articles/s41591-020-1132-9.pdf

VGOV aliu ]Uul ITILVIIVULCU VOV 1D 1TIVL puldaiiiteeu UJ JLaLtuLvuvi J 1 u&uu.u.luu Vi CALVLLUUD LIV

permitted use, you will need to obtain permission directly from the copyright holder. To

view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

IHME COVID-19 Forecasting Team. Modeling COVID-19 scenarios for the United States. Nat Med
27, 94-105 (2021). https://doi.org/10.1038/s41591-020-1132-9

Received Accepted Published
06 October 2020 13 October 2020 23 October 2020
Issue Date

January 2021

DOI
https://doi.org/10.1038/s41591-020-1132-9

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Provided by the Springer Nature SharedlIt content-sharing initiative

SU bjeCtS Health policy o Infectious diseases

Further reading


http://creativecommons.org/licenses/by/4.0/
https://s100.copyright.com/AppDispatchServlet?title=Modeling%20COVID-19%20scenarios%20for%20the%20United%20States&author=Robert%20C.%20Reiner%20Jr%20et%20al&contentID=10.1038%2Fs41591-020-1132-9&copyright=The%20Author%28s%29&publication=1078-8956&publicationDate=2020-10-23&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://www.nature.com/subjects/health-policy
https://www.nature.com/subjects/infectious-diseases
https://www.nature.com/articles/s41591-020-1132-9.pdf

Donal Bisanzio , Richard Reithinger ... Christopher H. Herbst

BMC Medicine (2022)

The impact of the COVID-19 pandemic and associated suppression
measures on the burden of tuberculosis in India

Matthew Arentz , Jianing Ma ... Hmwe H. Kyu

BMC Infectious Diseases (2022)

Typologies of stress appraisal and problem-focused coping: associations
with compliance with public health recommendations during the COVID-19
pandemic

Justin F. Landy , Aya Shigeto ... Lawrence M. Scheier

BMC Public Health (2022)

CovidVisualized: Visualized compilation of international updated models’
estimates of COVID-19 pandemic at global and country levels

Farshad Pourmalek

BMC Research Notes (2022)

Clinical, social, and policy factors in COVID-19 cases and deaths:
methodological considerations for feature selection and modeling in county-
level analyses

Charisse Madlock-Brown , Ken Wilkens ... William G. Adams

BMC Public Health (2022)

Nature Medicine (Nat Med) ISSN 1546-170X (online) ISSN 1078-8956 (print)


https://doi.org/10.1186/s12916-022-02232-4
https://doi.org/10.1186/s12879-022-07078-y
https://doi.org/10.1186/s12889-022-13161-5
https://doi.org/10.1186/s13104-022-06020-4
https://doi.org/10.1186/s12889-022-13168-y
https://www.nature.com/articles/s41591-020-1132-9.pdf



https://www.nature.com/articles/s41591-020-1132-9.pdf

