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Guidelines for Accurate and Transparent Health Estimates Reporting
(GATHER)

Please see Supplemental Information [SI] Table 1 for details on how this study meets the Guidelines for
Accurate and Transparent Health Estimates Reporting (GATHER).

2 Methods overview

Supplementary Information [SI] Figure 1 presents a schematic representation of the modelling process.
The estimation of past and current deaths blends data on reported COVID-19 deaths, COVID-19
hospitalisations, and COVID-19 cases and testing rates; there are various biases (described in Sl section
2) associated with reported COVID-19 deaths that must be overcome before the next step of the
modelling process. By using COVID-19 cases and testing rates (and hospitalisation data where available)
as leading indicators of deaths, we can extend our estimates of deaths beyond that of the available
death data (in particular, by up to eight days past the last death data point; details are given in Sl Section
2.5). From estimates of past and current daily deaths, we calculate past and current daily new SARS-
CoV-2 infections using age-specific mortality rates, age-specific infection fatality rates, and estimates of
the average time from infection to death (details are given in Sl Section 4.3).

The primary model for estimating future infections and deaths is a mechanistic compartmental model.
Specifically, the fraction of each location’s population that is susceptible (S), infected but not infectious
(exposed, E), infectious (I, I,), and recovered (R), forming an SEIR model. Temporal variations in past
transmission intensity is captured through the time-varying parameter S(t) (details are given in Sl
Section 5). The association between the time-varying transmission intensity and a number of covariates
is assessed in a multivariate mixed effects regression across all locations simultaneously (details are
given in Sl Section 5). Each of the covariates is then forecast into the future, with certain covariates
forecast multiple times corresponding to unique future scenarios (details are given in Sl Sections 5, 6).
The forecast covariate values and the fitted regression model are then used to estimate future
transmission intensity; the future transmission intensity is then used in the SEIR framework to estimate
future infections. Finally, reversing the process that estimated past infections from past deaths, future
deaths are estimated from future infections (details are given in Sl Section 5.4).

The final component of the modelling approach uses past, current, and future infections and deaths to
estimate hospitalisations, including estimates of ICU usage and invasive ventilation need (details are
given in Sl Section 7).

The estimation of past and current deaths model produces uncertainty. From this uncertainty, we
generate 1,000 draws of past and current deaths for each location. The remaining steps of the process
described above in brief and below in detail are done by draw, accumulating uncertainty in the
subsequent steps (e.g., a separate regression connecting location-specific time-varying transmission
intensity to covariates is conducted for each draw).



3 Death, case, and hospital quantities

Our sources of COVID-19 data come from a wide range of both governmental, non-profit, and volunteer
organisations. In all instances, we aim to best reflect what information is being reported by each
location with respect to the various COVID-19 measures. Given the various data requirements for the
model, we collated the following information:

e Basic COVID-19 epidemiological data (cases and deaths by location and date)
e COVID-19 hospital utilisation data (cumulative hospitalisations or admissions data)

e Detailed COVID-19 epidemiological data (age and sex stratified data, time interval
between symptom onset and clinical outcome, length of stay in hospital etc.)

e (Covariate data (discussed in Sl Section 3), including testing rates or data describing
behaviours relevant to COVID-19 transmission (e.g. mask use and general mobility)

Such data collection processes naturally reflect the messy nature of daily data collection and processing
—throughout the pandemic we have seen data systems fail and days of non-report that can lead to
misleading artefacts in time series that hinder modelling. Where feasible to track (such as state-level
cases and deaths) we track multiple sources of data which either allows us to replace erroneous data
should one system fail or identify artefacts in common and seek out a specific resolution.

All data sources are described in more detail below, as well as specific fixes and corrections required for
each data type.

3.1 Basic COVID-19 epidemiological data

Sources for the epidemiological data used in our model are listed by state in Sl Table 2. As a first pass,
given their global data collection efforts, we used the Johns Hopkins University CSSE data collection
system, which uses a variety of primarily web-scraping and text parsing approaches to periodically
capture reported case and death numbers. Across the pandemic, we have seen many times when data
reporting mechanisms have either broken down or have been paused (e.g. for weekends) and
consequently induce artefacts in daily case and death time series. For the US states and territories, we
supplement JHU routine collection in two ways (a) using The COVID-19 Tracking Project
(www.covidtracking.com) archive of historical data that captures screenshots of state COVID-19
dashboards several times throughout the day, allowing more flexibility in those locations where data
updates were delayed and (b) manual extraction and verification of state dashboards and tracking of
press-releases and footnotes of known issues and days off.

For some states, due to repeated inconsistencies between state reports and JHU time series, we have
completely replaced the automated time series with a human curated alternative, supported by a library
of screen captures and downloaded epidemiological bulletins and summaries (SI Table 3). Where there
are only intermittent discrepancies or regular known artefacts (e.g. Oregon not reporting on weekends
starting late May/early June), we have a separate mechanism that replaces erroneous values (S| Table
4). General sources for these data are listed by state in Sl Table 2.



3.2 Detailed COVID-19 epidemiological data

From a number of locations, far more than just total cases and deaths are reported, allowing us to
inform a variety of key parameters with data collated from across the world. Not all locations report
every piece of data however, so these data tend to be fragmented in space and time.

We currently source data stratified by age from 40 locations. Where feasible, this dataset continues to
be updated so it most accurately reflects the current state of affairs. Supplemental Information Section
4 describes how these available data are subset and used in the relevant analysis for both mortality
rates and infection-fatality rates. In addition, we track duration and length of stay data to inform
hospital utilisation statistics. To inform this, we use a mix of reported summary statistics, as well as
survival analysis of individual line list data. In short, we use the Global Line List
(https://github.com/beoutbreakprepared/nCoV2019) together with publicly available, de-identified
individual patient data from Ohio State, USA; Mexico; Ceara State and Rio de Janeiro State, Brazil, to
estimate the distribution of days from onset of symptoms to death from COVID-19.

3.3 Data preparation

While global compilers of data on cases and deaths expedite collection of data across multiple countries
and locations, for a variety of reasons these more-automated compilers can be incorrect. Similarly, even
where these aggregators are faithfully documenting what is reported, local issues (such as laboratories
not releasing information to state officials in a timely way) introduce a variety of artefacts into the data
that have no epidemiological relevance, but reflect issues in the data generation and reporting process
instead. Wherever possible, we adjust for these issues to better reflect the state-of-the-art knowledge
of the epidemiological situation. Where an anomaly is identified, we cross-reference with state
Department of Health dashboards, or other data aggregators (such as The COVID Tracking Project;
www.covidtracking.com) to identify the source of the discrepancy. News reports and press releases are
consulted when, rather than a data collection error, a reporting issue is noted, or the date when
probable cases and deaths were first added to the official tally introducing a large spike in daily deaths
and cases.

For some locations, due to repeated inconsistencies between Johns Hopkins data and state-level
reporting, we have manually undertaken our own extraction, or sourced an alternate repository of data
(SI Table 3).

Ad-hoc corrections made to the Johns Hopkins dataset are described in Sl Table 4 Where artefacts are
identified, the indicated cases and deaths are redistributed in the preceding time period proportionate
to the daily patterning of cases and deaths. The following redistribution steps took place:

e Alabama— 11" July, 3627 hospitalizations — Change in hospital data processing;

e Alabama — 24" September, 195 cases — Backlog of test results from a laboratory;

e Alabama — 25" September, 1594 cases — Backlog of test results from a laboratory;

e Alaska — 25™ August, 2 deaths — Two deaths added from prior time periods;

e Arizona— 17" September, 577 cases — Inclusion of those determined positive via antigen testing;
e Arizona — 18" September, 764 cases — Inclusion of those determined positive via antigen testing;
e Arkansas — 16" September, 139 deaths — Addition of probable deaths;

e Connecticut — 24" July, 440 cases — Testing backlog received from out-of-state lab;

e Delaware — 23" June, 67 deaths — Deaths from a prior period were reported on this day;



Delaware — 24™" July, 49 deaths — Reporting lags;

Florida — 1% September, 4620 cases — Backlog of test results from Quest Diagnostics

Hawaii — 18™ September, 12 deaths — Addition of deaths from an elder care facility outbreak
lllinois — 4™ September, 3558 cases — Backlog in timely reporting;

lowa — 27 August, 1450 cases — Addition of cases tested positive from antigen tests;
Kentucky — 24™ July, 360 hospitalizations — Anomalous reporting; assumed to be due to
reporting lags;

Kentucky — 1°t August, 463 hospitalizations — Anomalous reporting; assumed to be due to
reporting lags;

Louisiana — 21°* May, 682 cases — Louisiana reported a backlog of positive tests;

Louisiana — 9t September, 690 cases — Backlog of cases reported dating from 6™ August to 4%
September;

Maryland — 14" April, 64 cases — First day of reported probable cases;

Massachusetts — 1 June, 3,514 cases - Massachusetts added probable deaths and cases on 1°
June;

Massachusetts — 1% June, 141 deaths - Massachusetts added probable deaths and cases on 1°
June;

Massachusetts — 2" June, 110 cases — Massachusetts continued to add probable cases;
Michigan — 5™ June, 5014 cases — Michigan started reporting probable cases;

Michigan — 5™ June, 239 deaths — Michigan started reporting probable cases;

Michigan — 9t September, 63 deaths — Batch of probable deaths reporting on this day;
Missouri — 5" September, 56 deaths — Deaths reported in this period actually occurred between
June and August

Missouri — 23™ September, 64 deaths — Missouri provided updated timelines for deaths
reported in prior time periods;

Missouri — 26" September, 20 deaths — Missouri provided updated timelines for deaths
reported in prior time periods;

Montana — 24" September, 40 hospitalizations — Anomalous reporting; assumed to be due to
reporting lags;

Nebraska — 12™ August, 127 hospitalizations — Anomalous reporting; assumed to be due to
reporting lags;

New Hampshire — 15" July, 74 hospitalizations — Anomalous reporting; assumed to be due to
reporting lags;

New Jersey — 25" June, 1,854 deaths — Probable deaths included for the first time;

New Jersey — 8" July, 91 deaths — increase in probable deaths due to reporting lags;

Ohio — 15 September, 67 deaths — Backlog of deaths reported on this day;

South Carolina — 16™ July, 52 deaths — Reporting lags;

South Carolina — 11" September, 1487 cases — USC delayed in uploading results spanning 22"
August to 8" September;

South Carolina — 13" September, 1364 cases — Continued anomalous reporting due to college
reporting backlogs;

Virginia — 15™ September, 88 deaths - Anomalous reporting; assumed to be due to reporting
lags;

Virginia — 16" September, 36 deaths - Anomalous reporting; assumed to be due to reporting
lags;



Virginia — 17 September, 27 deaths - Anomalous reporting; assumed to be due to reporting
lags;

Virginia — 18" September, 20 deaths - Anomalous reporting; assumed to be due to reporting
lags;

Virginia — 19'" September, 32 deaths - Anomalous reporting; assumed to be due to reporting
lags;

Virginia — 20" September, 16 deaths - Anomalous reporting; assumed to be due to reporting
lags;

Wyoming — 9% April, 73 cases — Day Wyoming first reported probable cases.

For the following locations, we removed the total associated number of cases or deaths from the
preceding time period proportionate to the daily patterning of cases and deaths:

Arkansas — 14 August, 1251 cases — Decrease due to removal of out of state resident cases
Delaware — 24" July, 151 cases — Case series revised;

Indiana — 20" August, 81 hospitalizations — Unexplained decrease; retained 7-day daily average
and removed rest

Louisiana — 18th June 1,666 cases — 1,666 cases were identified as duplicates and total was
revised;

Maine — 2" June, 7 hospitalizations — Unexplained decrease, retained 7-day daily average and
removed rest;

Massachusetts — 1% September, 106 hospitalizations — Unexplained decrease, retained 7-day
daily average and removed rest;

Massachusetts — 2" September, 7983 cases - Unexplained decrease; retained 7-day daily
average and removed rest;

Nebraska — 18™ August, 48 hospitalizations — Unexplained decrease; retained 7-day daily
average and removed rest;

North Dakota — 25" May, 82 cases — 82 positive results were considered inconclusive and asked
to be re-tested due to a lab experiencing a recent malfunction on two pieces of lab equipment.
Oregon— 3rd September, 22 hospitalizations — Unexplained decrease; retained 7-day daily
average and removed rest;

Rhode Island — 24™ September, 208 cases — Removal of duplicated cases from case count;
Wyoming — 5% September, 4 hospitalizations — Unexplained decrease; retained 7-day daily
average and removed rest;

3.4 COVID-19 hospital utilisation data

Our model also estimates numbers of individuals in hospital and in intensive care. Hospitalisation data
therefore gets used in two ways: (i) as a leading predictor of daily deaths (ii) as a statistic used to define
the number of hospitalisations that result in deaths.

Data for these metrics were collected from the respective state departments of health and associated
dashboards. It is important to note that hospitalisation data is typically reported in one of three formats:
(i) the cumulative total of all hospitalisations to date (ii) the daily admission of newly hospitalised
patients (which if a series is inclusive of the first day of admissions, a cumulative total can be
recapitulated) and (iii) as a census statistic that reports the number of individuals currently in-hospital.
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Our current modelling framework takes advantage of data reported in formats (i) and (ii). Sources for
these data are listed by state in Sl Table 5.

3.5 Modelling past deaths using random knot combination splines (RKCS)

3.5.1 Dataand model overview

To derive infections from deaths and the infection fatality rate (Sl Section 2.6) for use in the
transmission model, we first perform a series of spline regressions using IHME's customised meta-
regression tool MR-BRT. MR-BRT (“meta-regression—Bayesian, regularised, trimmed”) is a trimmed
constrained mixed-effects model that provides an easy interface for formulating and solving common
linear and nonlinear mixed effects models. It is open source, and its core computational kernel uses the
mixed effects package LimeTr (https://github.com/zhengp0/limetr) and the spline package XSpline
(https://github.com/zhengp0/xspline). For the statistical models and algorithmic features underlying
MR-BRT, a published technical report is available®’.

We use MR-BRT functionality that allows the user to specify a number of potential knot combinations to
be randomly generated and runs separate models for each combination, which are then evaluated for
performance and combined using those scores to create a weighted composite of the sub-models. We
use 40 combinations in each of the subsequently described model stages, which are run separately by
location.

The estimates obtained from MR-BRT smooth the trend in reported deaths and leverage patterns in
reported case and hospital admissions data where available to make short term forecasts of deaths.
Deaths and cases by day were available for every location; hospital admissions data were also available
for 35 states. Before merging with deaths for modelling we account for the lag between hospital
admissions or reporting of cases and death based on the Global Line List
(https://github.com/beoutbreakprepared/nCoV2019) by shifting dates for these measures forward in
time eight days.

3.5.2 Deaths as a function of reported cases and hospitalisations

In the first stage we model the cumulative death rate with either the cumulative case rate or the
cumulative hospital admission rate as independent variable. Where data for both of these variables are
available, a separate model is run for each. We use a cubic spline with one knot per 12 data points, but
with the rightmost interval forced to be linear rather than cubic. We also fix the rightmost interior knot
such that the right segment contains four data points, and we constrain the curve such that cumulative
deaths monotonically increase along with cumulative cases/hospitalisations. Because of the shift
window, we have eight days of case and hospitalisation data that extend past the last day of death data
used to fit the model — by linearly extrapolating the tail of the fitted curve we produce projections of
deaths that correspond to the additional eight days of case or hospitalisation data, in addition to our in-
sample fit. These death estimates capture the trend in cases or hospitalisations while effectively
accounting for changing case- and hospitalisation-fatality ratios due to variation in exogenous factors
such as age, pattern of cases, and testing rates. Sl Figure 2 illustrates the fit for Florida, showing the time
series of cumulative cases and hospitalisations, as well as the fit to deaths.

3.5.3 Fitting final deaths curve with uncertainty using all epidemiological data inputs
Using deaths estimated as a function of cases and hospitalisations from the model described above, in
addition to observed deaths, we then fit a second stage model using cumulative deaths from all three
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sources with time (in days) as the independent variable. We inflate the standard error of the first stage
death estimates by a factor of two so that they are not as influential as the observed deaths. Once again,
we use a cubic spline with a linear right tail, and a constraint to be monotonically increasing over time.
We also fix the rightmost interior knot in such a manner that the linear rightmost segment contains four
days of reported deaths —and thus 12 days of estimated deaths from cases and hospitalisations.

With the resultant curve, we calculate the robust standard deviation of residuals in log daily death space
which we use to independently sample death rates by day, resulting in uncorrelated time series draws
representative of the observed noise in the data. We refit models to each of these log daily deaths time
series, giving us smooth estimates of death with uncertainty for the full range of dates with observed
deaths and extending out to an 8-day projection. We use the same knots samples as the cumulative
model, once again with a linear right tail. In this model, we add Gaussian priors on the 3rd derivative of
the cubic segments — a stronger prior of (0, 10™%) on the left-tail segment, and a “dampening” prior
of (0, 0.01) on the remaining interior segments. The first of these permits non-linear growth early on
in the outbreak while controlling for erratic behaviour in cubic splines at the terminus, and the second
serves to reduce volatility that would suggest implausible fluctuations in transmission in the
downstream model. Additionally, if fewer than 21 deaths have occurred in the past week we include a
strong prior (0, 1078) on the slope of the rightmost segment, forcing it to be flatter. This mitigates
the phenomenon of subtle changes of the linear death rate trend in settings with small numbers of
deaths being projected as exponential growth in the non-linear transmission model. SI Figure 3 shows
the cumulative point estimate and In(daily) samples of death curves for Florida.

3.5.4 Day-of-week ensemble

In addition to stochasticity in the day-to-day reporting of these indicators, there is also bias that can be
traced to the day of week on which the report falls — in general, Sunday and Monday tend to be
underreported, with compensating overreporting Tuesday through Saturday. While this is generally
true, the day of week pattern varies by state. This means that a model run on data reported on a
Monday can tend to over-emphasize or create the illusion of declining trends, while the opposite can be
true of models run on Saturday-reported data. To address this we run seven models, each using data up
to the most recent reporting for a given day of the week — so, for results based on data reported on
Monday, 28 September, we run a model using data up through Tuesday, 22 September, and additional
models for each day up through 28 September. The predictions of the linear right tail for each model
extend to the most recent day predicted in the final model, 6 September. We use 142 samples from
each of the past days models and 148 from the most recent day, resulting in 1000 draws for each
location.

3.6 Estimating infections from deaths

Conditioning on the death draws produced in Sl Section 2.5 and the Infection Fatality Rate (IFR) and age-
specific mortality rate (MR) calculated in Sl Sections 4.2 and 4.1, daily infections are inferred by
stratifying all-age deaths into age-specific deaths, using the age-specific IFR to determine the number of
infections that would have led to this quantity of age-deaths, and then backshifting the infections in
time to account for the lag between infection and deaths.
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For each of the j € 1, ..., 1000 cumulative death draws time-series, CD/, one infection-to-death lag, Uis
randomly sampled from a discrete uniform distribution on 17 to 21 days.

For each lowest-level location, loc:

1. Daily deaths time-series, DDj(loc), are generated by differencing the cumulative deaths time-
series, CDj(loc).

2. The mortality probabilities, M Py gepin, (loc), for an individual in this location belonging to each
5-year age bins, ageBin;, is calculated:

MRageBini(loc) X PopageB L-(lOC)
Zi(MRggen i(lOC) X POpggeBi L-(lOC) !

MPageBini (loc) =

where Popggeg; ,(loc), is the total population for that ageBin; at loc. If this is not available, we resort
to using the parent location’s population.
3. The expected age-specific daily deaths time-series, DDégeBi i(loc), is calculated by stratifying
the all-age deaths using the age-specific mortality probabilities, MPygep; ;(loC):

DDC{geBini(loc) = MP,gep; ,(loc) X DD’ (loc).
4. The expected age-specific daily infections time-series, DIigeB i(loc), are calculated from the

age-specific IFR and daily deaths:

DI} .y (loc)= DD] .. (loc)/IFRqgep ,(loc)

5. The date of the infection time-series is taken to be the date of the death time series shifted back
by I/ days.

6. The all-age daily infection time-series is prepared for the SEIR model by summing the infections
across all age groups:

DI (loc) = %;DI} o5 (loC).

ageBi
This process yields 1000 draws of daily new infections across all modelled locations.

MRageB i(loc)/ZiMRageB L.(ZOC)ADH: DAD

4 COVID-19 covariates

Covariates for the compartmental transmission SEIR model are predictors of the B parameter in the
model that affect the transition from Susceptible to Infected states. Covariates were evaluated on the
basis of biologic plausibility and on the impact on the results of the SEIR model. Given limited empirical
evidence of population-level predictors of SARS-CoV-2 transmission, biologically plausible predictors of
pneumonia such as population density (percentage of the population living in areas with more than
1000 individuals per square kilometer), tobacco smoking prevalence, population-weighted elevation,
lower respiratory infection mortality rate, and particulate matter air pollution were considered. These

13



covariates are representative at a population-level and are time invariant. Spatially resolved estimates
for these covariates are derived from the Global Burden of Disease Study 2019
(http://ghdx.healthdata.org/record/ihme-data/gbd-2015-covariates-1980-2015). Time varying
covariates include seasonality of pneumonia excess mortality, diagnostic tests per capita, population-
level mobility, and personal mask use. These are described in the following sections and summarised in
Sl Table 6.

4.1 Social distancing mandates

A wide array of social distancing mandates have been implemented across the 50 states, some
presenting as recommendations, others as requirements, some presenting fragmented updates that
escalate over a few days or weeks, others as discrete events where a state transitions from no measures
to full implementation of strict social distancing measures. To allow for comparability across different
geographies, we collected and collated these mandates focusing on four components of social
distancing, with six tiers of implementation. We only included those orders that were direct restrictions
and had a legal basis for enforcement; executive orders that were only “recommendations” or that
“urged” or “encouraged” citizens were therefore excluded. In all instances, we were interested in
documenting the date of enactment, not the date of proclamation.

4.1.1 Data processing

Following New Zealand’s Alert Level system we identified four key sectors: stay-at-home measures
intended to restrict the number of direct contacts any individuals may have, business and workplace
closures intended to minimise transmission among employees and with customers, educational closures
intended to protect students and staff, and internal travel restrictions intended to limit the amount of
non-essential movement taken by individuals. For stay-at-home measures we considered two strata: the
date at which any restrictions on the gathering of people took place, and the date at which a full stay-at-
home order was mandated, with interactions between households restricted. For business closures we
considered two strata: the date at which the first restrictions applied to businesses were enacted, and
the date on which all non-essential businesses were mandated to close. “Non-essential” is an inherently
local distinction — rather than provide an exhaustive list of businesses that must have been closed to
qualify, we followed local guidance. The necessary component, however, was clear exhaustive local
guidance as to what businesses were essential, with an emphasis that all other businesses are non-
essential and therefore closed.

In the last few months we have seen the de-escalation of these social distancing measures and have
tracked the dates on which prior restrictions have been repealed. Additionally, some states are re-
imposing social distancing measures in recent weeks, which we also track and incorporate into the
model. We identified legislation that was the antithesis of the closure orders that proceeded them.
Consequently, should an executive order requiring people to stay at home be relaxed so that different
households could interact, or that individuals could leave home for non-essential reasons, these orders
would be associated with the date of relaxation. For an executive order to be repealed, it must be
repealed across the entirety of the population affected — states that were following a phased process
that varied county by county were only considered to have repealed the strictest mandates once all
counties had the social distancing measures relaxed.
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We used two key approaches for populating the US mandate database — (i) cross-referencing the
resource compiled by the University of Washington Political Sciences Department tracking state-level
executive orders® and (ii) supplementation of these efforts by direct searches of state legislature
websites, and governor websites. Supplemental Information Table 7 provides the date of enactment and
repeal by state for each the six tracked measures, as well as linking to the source used to verify (see also
SI Figure 4 and S| Figure 5). Global mandates were tracked via a combination of using the World Health
Organization’s Public Health Social Mandates database, supplemented by specific local searches of
government websites and news resources.

4.1.2 Usein SEIR-fit

After analyzing the time trends of mandate imposition around the world, we noticed that initial
mandate imposition occurred within a two-to-three week period during March for most of the world,
indicating that mandate imposition had more to do with global pressure to enact mandates and less to
do with the outbreak size in a specific location.

Rather than model each mandate individually, we looked at the mandate imposition trend in aggregate
across five of the six IHME mandates: stay at home order, educational facilities closed, all non-essential
businesses closed, partial business closure, and any gathering restriction. Specifically, we fit a
quasibinomial model (mgcv R package) on the proportion of five mandates implemented at a given time
as a function of location and date. The regression has a location specific intercept and a spline on day
with six knots.

Proportion of mandates implemented ~ location + s(day, k = 6)

4.1.3 Forecasting mandates

The probability that five mandates will be “on” during any given day declines towards zero over time. To
ensure that mandate forecasts align with observed data, we multiplicatively intercept shift the forecast
to the start at the most recent observed data for mandate status.

4.2  Mobility

To better understand and predict disease transmission, we estimate human movement relative to
baseline movement patterns prior to the COVID-19 pandemic.

4.2.1 Data processing

These data come from mobile phone users. We used four primary resources to gauge the changes in
relative mobility of populations within each state: Google Community Mobility Reports
(https://www.google.com/covid19/mobility/), Facebook Data for Good
(https://dataforgood.fb.com/docs/covid19/), Safegraph
(https://www.safegraph.com/dashboard/covid19-shelter-in-place), and Descartes Laboratories
(https://www.descarteslabs.com/mobility/). Each of these sources have different definitions of mobility.
For example, the data from Google reports distance traveled to six categories of locations relative to
daily values from 03 January 3 to 06 February, 2020. SafeGraph reports the percent of devices that do
not leave “home” relative to a baseline period of 08 February to 14 February, 2020.

Google data are reported as a percentage difference in attendance to certain destinations compared to
the median value from the 5-week period 03 January to 06 February, 2020. The reports are stratified by
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six destinations: “Retail & recreation”, “Grocery and pharmacy”, “Parks”, “Transit stations”,
“Workplaces”, and “Residential”. We took the average of the percentage change in the “Retail &
recreation”, “Transit stations”, and “Workplaces” since these three destinations represent activities
most strongly affected by the social distancing measures. No further processing is undertaken prior to
modelling.

Descartes Laboratories release mobility statistics at state and county levels. They provide a mobility
index (of values normalised for the weeks of 17 February to 07 March, 2020) that represents the
maximum Haversine (great circle) distance from the initial starting points reported by devices. The top
10% of their data is removed due to possible inclusion of outlier data due to poor GPS recording. The
index is reported from 01 March, 2020 through to three days prior to-date. The index is transformed by
subtracting 100 from the m50_index value.

Safegraph data release a number of measures that allow for a stay-at-home metric to be calculated.
Data is reported from January 1st through to three days prior to-date, derived from GPS reports from
anonymous mobile devices. These are used to determine a nighttime location for each device over a six
week period. Devices are aggregated by home census block group. For modelling we determine an index
representing the percent difference between the number of devices that flagged as having not stayed
within their home range as compared to the mean number of devices that stayed within their home
range over a baseline reference period (08 February and 14 February, 2020). To calculate the number of
devices that stay within home range, for each census block group, we determine the ratio of devices
that never leave home to the total number of devices. Using the associated FIPS codes, we can
aggregate to the various analysis locations (whether counties, or states, or territories) by taking the
device-weighted mean of the census block group ratios.

Facebook Data for Good datasets are determined location-by-location or as geographic ranges.
Facebook tracks the aggregate patterns of movement of Facebook users with location history turned on
over a period of several hours. For this analysis, we receive patterns of movement reported by location-
specific administrative regions, which vary based upon the geographic range of the dataset (which could
span neighborhoods of a city, different cities, or districts, counties, or states). For each, a baseline period
for future comparison is developed by considering the prior 45 days of Facebook user activity.
Subsequent to the date of initiation, all future days of reporting cross-reference their own baseline
activity period. For each dataset, we used latitude and longitude for a given location to match it to one
of our modelled geographies using a spatial overlay. Where latitudes and longitudes were missing or did
not accurately represent a location, we manually assigned a model geography by name. Using the start
location from out modelled geographies, we find the mean percent change in mobility for all trips
starting from that location on a given day and at a given time (0800, 1200, or 1600). We weight this
mean by the number of users who normally take this trip (n_baseline). Given the variable baseline
periods, we must transform Facebook data so that it is comparable to other sources — given the much
broader geographic coverage of Google Community Mobility reports, we calculate the mean percent
change in Google data for 45 days preceding the first day of Facebook data and apply this to the
Facebook percentage change. Where the Facebook data starting date occurred before or at the same
time as the Google data, no transformation was necessary. Where Facebook data was present after the
initiation of Google’s time series, we calculated a baseline for Facebook using the mean percent change
in Google data over the 45 days prior. To adjust Facebook data, we calculated the absolute value change
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for the estimated Facebook baseline, added the difference between Google and Facebook values, and
divided by the Google baseline. This resulted in a new mean percent change that was consistent with
the baseline from Google and the other mobility datasets, rather than the Facebook dataset specific
timings, some of which cross-reference a baseline period well into the lockdown period.

There are several steps to smooth and standardise the data. We observe strong patterns in mobility by
the day of the week. The data from Google is already corrected for these day-of-week patterns. For all
other sources we calculate a 7-day rolling mean to account for weekly trends.

4.2.2 Use in SEIR-fit

To account for differences in time coverage between sources we calculate the median ratio between
each available pair of sources for each location across the time series. In locations where we are missing
the time series for a given source, we impute based on all other sources and the median ratio in that
location over time.

In the US, we calculate the indicator based on all four sources, and in the rest of the world, we calculate
the indicator based on Google and Facebook data. Because the sources tend to provide systematically
different estimates, and when a given location is missing data from a component source, we impute
values for the missing source based on the available source(s) and the global median ratio(s) with the
missing source.

After all missing dates and sources have been imputed, we average across sources and take a 5-day
rolling mean using Gaussian process regression to smooth over time. For locations where we are missing
data early in the time series, we use Holt smoothing back in time, linear damped with phi = 0.9 to create
a full time series from 01 January, 2020 through the most recent available date of data. In sub-national
and national locations where we are missing data, we impute the national and regional averages
respectively.

Once we have generated a full location/time series dataset of mobility, we fit a linear regression using
an open source mixed effects solver SLIME (https://github.com/zhengp0/SLIME/) to determine the
effects of social distancing mandates in each location. SLIME provides functionality to incorporate
bounds and a Gaussian prior to the total effects (8; + u;;), which is important for guiding the regression
finding the correct coefficients. We calculate mobility as:

Mobility; = (By + p11)SD1y + (By + 1420)SD 2y + (B3 + p31)SD3yc + (By + pa) PSD1y,
+ (Bs + us))PSD3y + (Bs + pe) Anticipatey, + e,

Where Mobility,; is the percent change from baseline for a given location (/) and time (t), SD1;;, SD2,
SD3,;, PSD1,;, and PSD3,; are indicator variables for five social distancing mandates—stay at home
order, school closures, essential business closures, restricted gathering order, and partial business
closures—set to be 1 when a policy is implemented in a given location (/) and time (t) and 0 otherwise.
Anticipate;, is an indicator variable that is set to 1 beginning 7 days before the first mandate is
implemented to account for reduced mobility prior to policy intervention. (8; + u;;) estimates the
location-specific (/) effect of each mandate (i) and e;; is the residual error. We set a prior on the variance
of all random effects of 0.001 and set a bound such that (8; + u;;) must be negative for all locations (/)
and mandates (i).
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4.2.3

Forecasting mobility

For each location we forecast mobility based on the location-specific estimated effects (f; + ;) and
any mandates that have been lifted or announced. Beyond the period for which we have documented
policies, we use the mandate forecast model described in section 3.1.3, which estimates the location-
specific proportion of mandates implemented. We assign an equal probability of being lifted to each of
the mandates that are still implemented such that the total proportion of mandates implemented is
equivalent to the predicted proportion. In the United States the model restricts the date of school
reopening to no earlier than August 15, 2020. We do not allow mobility projections to go above zero,
the baseline mobility prior to the Covid-19 pandemic.

4.3 Testing per capita

Testing for COVID-19 can impact the epidemic both directly and indirectly. Directly, a positive test result
alerts an individual to their need to self-isolate and for their contacts to quarantine. Indirectly, higher
levels of testing ensure that policy makers and healthcare professionals have accurate information when
making decisions about social distancing mandates and resource allocation.

4.3.1 Data processing

Data on the number of tests administered were sourced from a combination of direct reports from
government health authorities; The COVID Tracking Project for the United States, except for Washington
State; and Our World in Data for all locations that were present in their database that we had not
sourced from direct reports, supplemented by additional country resources when missing. Sources for
these data are detailed in Sl Table 8.

4.3.2 Use in SEIR-fit

When both daily and cumulative data were present on the same date for a given location, we gave
preference to the cumulative data. When there were daily data reported in between gaps in cumulative
data reports, we added the daily data to the preceding cumulative value to fill in the missing cumulative
data. Dates where only positive tests were reported were dropped. Cumulative data preceded by days
of no reports was shifted to the midpoint of the missing interval and scaled to equal the average daily
tests over the interval. In locations where the date of the first confirmed case preceded the date of the
first reported tests, we utilised the same approach of shifting to the midpoint of the interval and setting
the level to the average daily tests over the interval. We then aggregated to weekly intervals and linearly
interpolated the weekly data with knots placed at the middle of each week. Finally, we smoothed the
weekly interpolated data using ten iterations of smoothing with a uniform kernel and a three-day
bandwidth.

4.3.3 Forecasting testing

We projected levels of daily testing per capita using the location-specific mean daily difference in testing
per capita for locations with data; in effect assuming that future growth in daily testing per capita will
match past increases in testing. For locations that were missing testing data, we predicted the daily
increase in testing per capita using the Socio-demographic Index, a composite used widely in the GBD
study and reflecting income, education, and fertility. We did not allow testing per capita to increase in
perpetuity, instead we capped the maximum daily tests at 500 per 100,000 people.
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4.4 Mask effectiveness and use

We performed a meta-analysis of 40 peer reviewed scientific studies to assess mask effectiveness for
preventing respiratory viral infections. We updated systematic reviews and meta-regressions of the
individual benefits of mask use. We used MR-BRT (see Sl section 2.5 for additional information on MR-
BRT) to perform a novel meta-analysis. We also analyzed survey data on the levels and trends of mask
use. This analysis sought to estimate the proportion of people who self-reported always wearing a
facemask when outside their homes.

4.4.1 Data processing

To identify variation in mask use across both US and global locations during the timeframe of the
current COVID-19 pandemic, we combined survey data from multiple sources. Our covariate for mask
use is the proportion of adults that self-report always wearing a mask when outside their homes. For US
estimates (all 50 states and Washington, D.C.), we analyzed volunteer survey data from PREMISE
(https://www.premise.com/covid-19/) a crowd-sourcing data collection and analytics platform. The
PREMISE survey asked respondents a variety of questions about behaviours, sentiments, and attitudes
vis-a-vis COVID-19. We make use of the following: “When you leave your home do you typically wear a
face mask (SELECT_ONE)” with responses “Yes, always; Yes, sometimes; No never”. Respondents were
also asked about their reasons for not wearing a mask. The latitude and longitude for each respondent
was also provided. The date range of data incorporated in this analysis was 23 April 2020 to 21
September 2020.

We evaluated the maximum level of mask usage observed globally during the COVID-19 pandemic and
used this value as an upper bound for what could be achieved in the United States (see Sl Section 6.1 on
scenario development). To evaluate mask usage in countries other than the US, we used volunteer
survey data collected through the Facebook app, the social networking platform with more than 2 billion
global users, as part of its COVID-19 symptom survey and Data for Good program
(https://dataforgood.fb.com/docs/covid19/). COVID-19 symptom survey data are collected via the
Facebook app by the University of Maryland (non-US) and Carnegie Mellon University (US). For the non-
US estimates, we analyzed aggregated data hosted by the University of Maryland’s Joint Program in
Survey Methodology. While the principal focus of the survey is on self-reporting of COVID-19-related
symptoms experienced by the sampled user and members of their household, we make use of
responses to the following question: “In the last 7 days, how often did you wear a mask when in public?”
to which there are the following responses “All of the time; Most of the time; About half of the time;
Sometimes; Never; | have not been in public during the last 7 days”. For this survey, daily responses are
received and processed so that all respondents from the same geography are combined into one day-
specific response, and then the proportion of responses for each option are determined from this
composite. Facebook data have two- to three-day lags and are updated twice per week. The date of the
first set of data from Facebook that we analyzed is April 23, 2020 and these continue to be updated
twice per week through 28™ September 2020 (https://dataforgood.fb.com/docs/covid19/). Lastly, we
used the YouGov COVID-19 Behavioural Tracker survey (https://today.yougov.com/covid-19).

YouGov surveys cover 29 countries and have interviewed around 21,000 individuals each week since 1
March and up until 28th September 2020. From YouGov, we use the following question: “Thinking about
the last 7 days, have you worn a face mask outside your home (e.g. when on public transport, going to a
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supermarket, going to a main road)” with responses “Always”, “Frequently”, "Sometimes”, "Rarely”, and
“Not at all”. Respondents for “Always” were the numerator in our proportion.

4.4.2 Use in SEIR-fit

We used a smoothing model to produce estimates of observed mask use. This smoothing process
averages each data point with its neighbors. Projections of mask use past the observed survey data were
flat at the value of the last observed, smoothed model.

4.4.3 Forecasting mask use
Mask use by location is projected forward at a constant level from the last date of observed mask use
data (21 September, 2020) through 28 February, 2021.

4.4.4  Estimation of mask use effect size

We conducted a meta-analysis to determine the efficacy of masks in reducing transmission of
respiratory viruses by extracting data studies from two published meta-analyses and one additional
article — these analyses are reported in greater detail in a forthcoming preprint?. The resulting meta-
regression calculated log-transformed relative risks and corresponding log-transformed standard errors
based on raw counts and used a continuity correction for studies with zero counts in the raw data
(0.001). Whereas the other meta-analyses reported one outcome per study, we extracted all relevant
outcomes per study. Additionally, we included additional specifications and characteristics to account
for differences in characteristics of individual studies and to identify important factors impacting mask
effectiveness. These include the type of population using masks (general population versus healthcare
population), country of study (Asian countries versus non-Asian countries), type of mask (paper/cloth or
non-descript versus medical masks and N95 masks), type of control group (no use versus infrequent
use), type of disease (SARS-CoV 1 or 2 versus H1N1/influenza/other respiratory pathogens), and type of
diagnosis (clinical versus laboratory). The geographic locations of the studies included: China, Singapore,
Hong Kong, Thailand, Vietnam, Saudi Arabia, South Korea, Canada, Germany, and a multinational airline
flight. The region with the largest proportion of studies was Southeast Asia, where 24 of 40 studies were
conducted. More than half the observations (36 or 65 observations, or 55%) were of SARS-CoV 1 or 2, six
of which examined SARS-CoV 2. One observation studied cloth masks, 19 studied non-descript masks,
and 44 looked at surgical, medical, or N95 masks; 52 observations were diagnosed via laboratory
methods. We pooled “other” masks and cloth masks so that they could represent the range of the most
common masks that members of the general public might wear in a non-medical setting. Moreover, 18
observations were in the general population, while 47 examined healthcare workers or healthcare
settings. We were particularly interested in studies of the general population (i.e. non-healthcare
setting), including households, student populations, and airplanes. With regards to control groups, 49
observations considered “no use” as the control, while 14 considered infrequent use and one looked at
pre-/-post/study design. The re-extraction and inclusion of articles not included in the other meta-
analyses resulted in 65 rows of data from 41 papers. We retained one additional study from the
unavailable papers for sensitivity analyses; one paper was excluded due to our inability to recreate 2x2
table and the reported odds ratio; two papers were excluded due to incorrect control groups. We
calculated relative risks and corresponding log-transformed standard errors based on raw counts where
available.
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We used MR-BRT (Sl Section 2.5) to perform a meta-analysis that considered the various characteristics
of each study. Our MR-BRT analysis used random effects with gamma terms accounting for between-
study heterogeneity and quantified remaining between-study heterogeneity into the width of the
uncertainty interval. We considered several analyses, but in the end settled on univariate models, an
intercept-only model, and several multivariate models. Our analysis considered intercept-only model, all
univariate associates, and multivariate models, as well as sub-analyses for key variables like population
and mask types. We also performed various sensitivity analyses to verify the robustness of the modelled
estimates and found that the estimate of the effectiveness of mask use did not change significantly
when we explored four alternative analyses, including changing the continuity correction assumption,
using odds ratio versus relative risk from published studies, using a fixed effects versus a mixed effects
model, and including studies without covariate information.

Our analysis suggested a reduction in infection (from all respiratory viruses), for all mask-wearers, by at
least one-third (Relative Risk = 0.65 (0.47-0.92)) relative to controls. The intercept only model has a
point estimate of 0.48 (0.42-0.56) for all users, medical or otherwise. For all non-medical mask users, we
estimate the reduction in infection is 0.57 (0.45-0.74) via univariate regression, and 0.65 (0.47-0.92) via
bivariate regression.

4.5 Pneumonia seasonality

Pneumonia is one of the main clinical syndromes associated with respiratory SARS-CoV-2 infection and
its seasonality is marked in many locations, particularly those far from the equator. This could be due to
climatic variation (relative humidity, average air temperature) or due to human behaviour (greater time
spent indoors). We modelled the ratio of pneumonia deaths in a given week to the average weekly
pneumonia deaths by location. As such, ratios above 1 indicate that more pneumonia deaths than the
yearly average occur in that week, and ratios below 1 indicate that fewer deaths than the yearly average
occur. For a map showing these estimated ratios for each US state on the final week of the year, see
Appendix 5 Figure 3.

For locations where we have weekly vital registration data for pneumonia deaths, we used the data to
directly model this ratio. For the United States, we used weekly pneumonia mortality data from the
National Center for Health Statistics Mortality Surveillance System from 2013 to 2019 by each state.
Pneumonia deaths include all deaths classified by the full range of ICD codes in J12 - J18.9. To account
for uncertainty in vital registration data and model type, all ratios were estimated 1000 times in the
meta-regression model. The proportion of deaths in each week was calculated as the weekly number of
deaths over the annual number of deaths in a location. The standard error was calculated using the
formula for binomial variance:

weekly death count “ (1 — weekly death count
annual death count ( annual death count )
annual death count

variance =

For locations without data on pneumonia deaths, the strategy included additional models and
calculations to generate estimates for all locations. We modelled the global seasonality trend pooling all
pneumonia deaths data, calculated the amplitude of the seasonality time series in specific locations to
model and predict the relationship between amplitude and latitude, and then used the estimated
amplitude values by latitude to manipulate the amplitude of the global pattern. As such all locations
without data have the same general seasonality pattern (higher in October to April in Northern
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Hemisphere; higher in April to October in Southern Hemisphere), but the amplitude varies by location,
depending on the latitude.

To preserve the cyclical trend of the pneumonia deaths in the model, the same 52 weeks of data were
triplicated, and added to the beginning and the end of the time series. We then modelled the logit ratio
of weekly deaths to annual deaths (shown in Sl Figure 6) in a meta-regression tool developed at the
Institute for Health Metrics and Evaluation called MR-BRT (Meta-Regression, Bayesian, Regularised,
Trimmed) (see section 2.5 for additional detail). The meta-regression used a cubic spline on week and
1% trimming of the data inputs.

4.6 Time-invariant covariates

4.6.1 Lower Respiratory Infection Mortality

In the transmission model, the mortality rate due to lower respiratory infections (LRI) is captured as the
location-specific age-standardised mortality death rate in the population 15 years or older. The 15+
years age-standardised LRI death rate is assumed to represent transmission of respiratory
communicable diseases among adults.

Estimates of the LRI mortality rate come from the Global Burden of disease study, and methods for
estimation are described elsewhere3®3%44, Briefly, we used vital registration and verbal autopsy data in a
Bayesian ensemble model which uses out of sample validity to produce a variety of plausible models
which are weighted based on their performance in the final ensemble. Estimates are produced for each
age, sex, year, and location. For this analysis, we used the age-standardised rate for both sexes by
location in the year 2019 (most recent complete year of estimates). For a map showing the distribution
of lower respiratory infection mortality across states, see Appendix 5 Figure 2.

4.6.2 Altitude

The incidence and severity of lower respiratory infections, including pneumonia, is greater at higher
elevation®¥, Altitude and humidity are believed to be a predictor of transmission and several studies
have found greater mortality due to pneumonia at higher elevations, possibly due to decreased oxygen
concentration at higher altitudes. The proportion of the population living below 100 meters above sea-
level by country was obtained from the Global Burden of Disease study
(http://ghdx.healthdata.org/record/ihme-data/gbd-2015-covariates-1980-2015).

4.6.3 Smoking

The adult (15+ years) age-standardised tobacco smoking prevalence in 2019 was used as a covariate.
This covariate is from the Global Burden of Disease study 2019 and described in detail there. Briefly,
we estimated the prevalence of current smokers (daily or occasional) using individual-level and
aggregated available survey data. The prevalence was modelled using Space-time Gaussian Process
Regression to produce smoothed estimates by space, time, age, and sex. For this analysis, we used age-
standardised prevalence among both sexes. Smoking prevalence is location-specific. For a map showing
the distribution of smoking prevalence across US states, see Appendix 5 Figure 4.

4.6.4 Ambient particulate matter pollution

Ambient particulate matter pollution is a covariate from the Global Burden of Disease study 2019 and
is defined as the population-weighted mean exposure to air particles with an aerodynamic diameter less
than 2.5 micrometers per cubic meter of air. Input data for this model come from satellite observations,
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ground measurements, land use data, and chemical transport model simulations. Estimates are
produced on a geospatial resolution and aggregated to the national level by population-weighting. This
covariate is location-specific. For a map showing the distribution of particulate air pollution by US state,
see Appendix 5 Figure 1.

4.6.5 Population density

Population density per pixel was calculated using Worldpop total population rasters and an area raster
and is represented as the percentage of the population living in areas denser than 1,000 people per
square kilometer (km?). By country, we determined the proportion of the population living in discrete
categories of density and aggregated categories less than 1000 per km?for this analysis, using 2020
estimates to approximate population.

4.6.6 Demography

Demographic data on state populations, namely the age structure of the population, is used in
estimating the age-specific mortality rate calculated in Sl section 4.1 to stratify all-age deaths into age-
specific deaths. Age distributions were obtained from the Global Burden of Disease study*%*49,

4.6.7 Altitude

Altitude is captured as the proportion of the population living below a given threshold of sea level. For
the sake of this analysis, we incorporated altitude as the proportion of the population living below 100
meters above sea-level by state; this value was derived from the Global Burden of Disease study
(http://ghdx.healthdata.org/record/ihme-data/gbd-2015-covariates-1980-2015).

5 Intermediate quantity modelling
5.1 Mortality rate by age estimation

To determine the age pattern of mortality for each location, we assembled available data from multiple
global locations (Sl Table 10) and fit a hierarchical meta-regression model®’. The dependent variable was
logit-transformed deaths divided by population. We employed a cascading spline structure to capture
the non-linear effect of age, borrowing information from levels higher in the cascade to inform the
shape of the age effect in relatively data sparse regions. The first stage of the cascade was a model fit on
all data, with random intercepts by location. The estimated spline coefficients from this global model
were passed as Bayesian priors to the subsequent region-specific models, and the region-specific
coefficients were passed as priors to location-specific models. For a given in-sample or out-of-sample
location, the model from most detailed geographical level was used to make predictions. Finally, we
divided predictions by the minimum location-specific value to obtain age-specific relative mortality
ratios.

5.2 Infection fatality ratio

We estimated infection fatality ratios (IFR) using random effects meta-analysis, modeling the dependent
variable as logit-transformed deaths divided by infections. To calculate the dependent variable, age-
specific observations from seroprevalence studies (see Sl Table 9) were multiplied by population to
obtain an estimate of infections. For each population represented by a seroprevalence observation, a
corresponding estimate of deaths was obtained by splitting all-age deaths into age group-specific deaths
based on the population’s age distribution and predicted age pattern of mortality. The model included
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random intercepts by study and a spline to estimate the non-linear effect of age. The spline method
allows for the estimation of a continuous age effect from observations recorded as age groups.

5.3 Infection to death duration

To estimate the time from infection to death, we brought together two distinct sources of information:
published studies of time from infection to symptoms and individual patient data on time from symptom
onset to death. Due to a paucity of data on the time from infection to symptom onset, we used the
median time reported from a single source (5.1 days) for the first part of this duration and added it to a
distribution for the second derived by pooling data from the Global Line List
(https://github.com/beoutbreakprepared/nCoV2019); Ohio, USA
(https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards); Rio de Janeiro State, Brazil
(http://painel.saude.rj.gov.br/monitoramento/covid19.html); Ceara State, Brazil
(https://indicadores.integrasus.saude.ce.gov.br/indicadores/indicadores-coronavirus/coronavirus-
ceara); and Mexico. This pooled dataset included data on 5,125 individuals, with a median time from
onset of symptoms to death of 11 days. Informed by this, we use a uniform distribution over 17 to 21
days of lag between infection and death.

5.4 Hospitalisations to death ratio

To determine hospitalisation, we use cumulative hospital to cumulative deaths ratios estimated directly
from hospitalisation and mortality data in the US and Europe through July 2020. We assembled data on
COVID-19 hospitalisations from a number of countries and US states as detailed in Sl Table 5. We
analyzed hospitalisation to death ratios using random effects meta-analysis. We used the location-
specific random effect in the estimate for locations with data. In the absence of data we used the
corresponding pooled effect for other countries.

As the hospitalisation to death ratios are for all-ages only, to estimate the age-pattern of the
hospitalisation to death ratio, we used the age distribution of hospitalisation to death (H: D) in the US to
estimate the age-distribution for other countries and states:

H: DageBin(US) * H: DallAge (loc)
(H: DageBin(US) * DageBin(loc))/DallAge (loc)

H:Dggepin(loc) =

6 Fitting and predicting transmission dynamics

6.1 SEIR-fit

6.1.1 Model formulation

To project the full time-series of deaths and infections to the future, we use a transmission model with
the following compartments: susceptible, exposed, infected, and removed (SEIR). In particular, each
location’s population is tracked through the following system of differential equations:
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where a represents a mixing coefficient to account for imperfect mixing within each location, o is the
rate at which infected individuals become infectious, y; is the rate at which infectious people transition
out of the pre-symptomatic phase, and y, is the rate at which individuals recover. This model does not
distinguish between symptomatic and asymptomatic infections but has two infectious compartments (I,
and I,) to allow for interventions that would avoid focus on those who could not be symptomatic. I; is
thus the pre-symptomatic compartment.

6.1.2 Basic reproductive number under control and the effective reproductive number

In this section, we derive the time-varying basic reproductive number under control, R.(t), and the
time-varying effective reproductive number, R, (t). For a compartmental model with static
coefficients, we can calculate the basic reproductive number as the largest singular value of the next
generation operator

R, = Amax(FV_l)

where F is the Jacobian of the vector of appearance rates for compartments that actively possess the
virus (E, I;, and I, in our case), and V = V~ + V7 is the Jacobian of the vector of transport rates of the
individuals between these compartments. Both Jacobians are evaluated at the state of disease-free
equilibrium (i.e., when § = N). The appearance and transport rate vectors for our SEIR model
formulation are:

,85(11 +1,)* oF
f= ON , 17=<]/1]1—UE>.
0 Y2lz — 1l

We can then directly calculate the Jacobians at disease-free equilibrium:

0 0 0

(0 af(y + )% aBU; + Iz)a_l)
F =
0 0 0
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Thus, the next generation operator is
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which yields

1 1
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6.1.3 Fitting B(t)

We denote the new daily infections output from the previous step as:

f(@®) = BOSUy + 1)

For each draw we take as constant the parameters governing the transmission dynamics other than
B(t) (i.e., a, g, y1, and y,). These parameter values are drawn from distributions based on existing
literature and can be found in Sl Table 11.

With a known f(t), we can solve a single simple linear ODE to get E (t):

dE

= = —f®) —0oE

This ODE can be solved in closed form using integrating factors, or numerically. In practice we use the 4t

order Runge-Kutta method (RK-4). However, it is useful to solve it in ‘closed form’ using the integration
factor approach. Defining

v(t) = f odt = ot,
we have the closed form solution
t
E(t) = exp(—at)f —f(t)exp(ot) dt + Cexp(—ot), C =E(0)
0
Having obtained E (t), we repeat the process, solving for I, (t) and I, (t):
dl,
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1, (t) = exp(—y1t) ( f —f(z) exp(o71) dr) + 19 exp(—y1t)
0

= F1(t) + I{ exp(=y1t)
dl,

at +v2ly = v111(0)
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0

t
¥111(7) exp(y,7) dT)

t
= exp(—y,t) ( f Y1(F1 () + I exp(—y17)) exp(y,7) dr)
0

t 10
= exp(—Y2t) < f Y1 Fi(©) eXp(Vzr)dr>+ —— (exp(—y1t) — exp(—y1))
0 Y2—"
IO
= F,(t) + —— (exp(—¥1t) — exp(—¥,t))
Y2—N"

where E(t) is known when solving I;, and then I, (t) is known when solving for I,. While useful for
formulation to think of the exact solutions, the integrals must still be solved numerically. We therefore
solve all the differential equations using Runge-Kutta order 4. With f(t) in hand, we also obtain S(t) by
simple integration and subtraction. Having solved for S(t), I,(t), and I,(t), we then have:

_ Nf(t)
SO + L®)"

B(®)

6.2 [ regression

6.2.1 Overview

With B¢ (¢) fit to the data, we next perform a log-linear regression using the open source mixed effects
solver SLIME (https://github.com/zhengp0/SLIME) to determine the strength of the relationship
between S¢(t) and the various covariates. All covariates are assumed to have fixed effects while the
intercept is allowed to vary by location. For location [, the regression is calculated as:

ln(ﬂp’l) = ao'l + Xla

such that the mean squared error between f8,,; and ¢ ; (our fit from the previous stage) is minimised by
location I. aq ; is the random intercept for location [, X, is a matrix with a column for each covariate in
the regression and a row for each day, and « is the coefficient indicating the strength of the relationship
between log  and the covariate. Several coefficients in the model are bounded as described in their
corresponding sections, while others are only constrained by directional bounds. As noted in (previous
sections), not all covariates are time varying. These non-time varying covariates are used to explain
some of the location specific variance otherwise absorbed into the random intercept. The time-variance
and bounds of the coefficients are denoted in Sl Table 11. A sensitivity analysis removing the constraints
was conducted and described in SI Section 8. Using the fitted a and the forecasted covariates, we
produce, by draw, estimates of future transmission intensity 8, (t).

6.2.2 Fitted regression coefficients
By draw, across all locations, each coefficient is approximated with a point estimate. Uncertainty in
estimated coefficients, therefore, is calculated by looking at the distribution of these point estimates
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across draws. Boxplots of these distributions are plotted by location in panels | through Q of even-
numbered figures in Appendices 1-3; summary statistics are described in Sl Table 6. In addition to
sharing the same coefficients for the location or location time varying coefficients, each location has a
fitted random effect a; with distributions derived similarly to those of the fined effects. Boxplots of
these distributions are plotted by location in panel R of even-numbered figures in Appendices 1-3.

6.2.3 Regression diagnostics

Although the model is fit in log-f space, it may be of more practical importance to compare the fit of the
[ regression in natural space. To this end, we compare, by draw and by location, the time-varying input
B from Sl Section 2.6 (Appendix 4 figures, panel A) with the time-varying fitted f predicted from the
regression (Appendix 4 figures, panel B). By draw, we then take the difference between these to
calculate residual estimates (again, in natural space, not in log space) (Appendix 4 figures, panel C). As
with the estimates of the coefficients from the 8 regression, the uncertainty displayed in each panel is
based on the distribution of the values across draws. As expected, the uncertainty in the S residuals is
narrower than that of either the input f trajectories or the fitted 8 trajectories.

To quantify the performance of the regression, we then calculated the root mean squared error (RMSE)
associated with these residuals. Our infection estimation model has difficulties accurately quantifying
the distribution of infection over the first few days of a location’s outbreak which thus corresponds with
unreasonable variation in 8 values over this time. As such, and due to this period’s relative minor impact
on the S regression overall, we illustrate our RMSE by calculating the square root of the average
squared residual from April 1° to the present across locations (Appendix 4 figures, panel D). Once again,
uncertainty is based on the distribution of RMSE across draws. While there is draw level differences in a,
y1 and y, that impact how f translates into R, at the mean level of each quantity, an error in
estimating 8 of 0.125 translates into an error in estimating R, of 0.5. Of course, as the outbreak
progresses, an error of 0.125 in 8 would then result in a smaller and smaller error in R.¢¢ (directly
proportional to the fraction of the population that remains susceptible. The large majority of states have
median RMSEs less than 0.125 (41/53 states, counting the three sub-regions of Washington state
separately), with notable exceptions in states with very low transmission (e.g., Montana and Hawaii).
Finally, to assess the potential for changes in model performance through time, we alter the starting
window across which we calculate the RMSE from April 1% forward in time a by week up through August
1°t (each time taking the RMSE up through the present) (Appendix 4 figures, panel E). While there is
some variation in states through time, again the performance of the model remains consistent as we
focus more and more on the recent past model fit, with most median RMSEs below 0.125. We note that
New York has an increase in RMSE over time, but as they have experienced a substantial outbreak, Resy
would be substantially smaller than R, and thus this error would have a diminished impact.

6.3 f adjustments

To ensure continuity from our fitted B from SEIR-fit to the predicted B into the future, we shift the
predicted f3,. Generally speaking, we shift 5, towards f by first ensuring that on the day of transition,
say T, Br(T) = B¢ (T). Then, over a window of time we slowly transition from the hard adjustment
based on the residual at time T, we shift by the average residual between f; and 8, over a window of
time in the past. More specifically, define r(t) as
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Then, for a given n and M, we define Sz (t) as

Be () = w(t)Br, (1) + (1 — w(t)B, (1)

Based on out-of-sample tests similar to those described in the sensitivity analyses for optimal values of
M and n, we found that the optimal n was 42 and the optimal M was for M to be, by draw, drawn from
a uniform distribution of windows from 7 to 28 days.

6.4 SEIR-predict

The general format of our predictions is relatively simple: we take the final predicted S and run our
system of ODEs forward in time using our fitted compartment values at time T as the initial conditions
of the second SEIR model.

There are however a number of simplifications made within our modelling formulation. First, we ignore
the potential for importation which may be more likely in larger, more dense locations. Second, we
assume a well-mixed population which may be more egregious in smaller, less dense locations. As two
intermediate solutions for this, we introduce two correction factors. In each location we only use one or
the other correction factor, and the use and magnitude of the correction is based on OOS predictive
validity dropping 8 weeks of data and comparing the predicted outbreak to the observed one. The first
correction factor allows for the addition of a small number of additional infections above and beyond
those from the interaction between I; and I, and S. These can be envisaged as individuals traveling
outside the location, becoming infected, and returning as exposed individuals. The second correction
factor removes a small fraction of exposed individuals from the E compartment and moves them
directly to the recovered compartment. Our model acts on the fraction of individuals who are infectious,
exposed, etc, and the results of allowing for fractional infectious individuals (and no possibility for truly
‘zero’ infections) can alter the dynamics for small locations. These corrections can be mathematically
described using 8% and 8~ for the importation correction and the small location correction,
respectively. Again, each location receives only one of these and they alter the SEIR model formulation
for prediction as:
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With these correction factors identified, we can then run our ODEs forward (again using the Runge-Kutta
4 algorithm), to have a complete time-series of infections through the end of the year.

6.5 State-specific f regression results

With the state-specific static and time-varying covariates, the fitted coefficients, and the state-specific
intercept, we calculate fitted values of . In Appendices 1 through 3, we display, by state, first the values
of each of the covariates (though time where appropriate) and then the resultant fitted beta. Within
each covariate panel, we combine the values of the covariates that were used in the regression as well
as the predicted values of the covariates across the various scenarios. Using the predicted values of the
covariates, as well as the residual averaging described in Section 5.3, we estimate future values of
inpanel B.

There are numerous diagnostics that we provide for each state (and each scenario). Here we describe
how these diagnostics can aid in the interpretation of our model for three exemplar settings: California,
New York, and Texas.

6.5.1 Exemplar 1: California

Beginning with Appendix 1 Figure 12, panel G displays the resultant smooth estimate of daily deaths,
here based on observed daily deaths and observed daily cases. The final red spline represents the mean
of 1,000 draws with the lighter shaded red representing the 95% uncertainty interval. Draws from this
distribution are then back-cast into draws of daily infections. These are the input to the calculation of
B(t) in Sl section 5.1.3.

Each of the time-varying covariates for the 8 regression are plotted in the top row of Appendix 1 Figure
12, with the part of these covariates that goes into the regression indicated by those to the left of the
dashed line (which represents the last day of estimated daily infections based on data). There are
numerous versions of mobility and mask use (all only different in the future) corresponding to the
respective scenarios (e.g., ‘Mask Use Best’ here is the mask covariate for the scenario where mask use
goes up to 95%). The fitted value of the corresponding coefficients for each covariate (static and time-
varying) is displayed in panels | through R). Here, the uncertainty is based on the distribution of the draw
level mean estimates. Each of the sub-panel boxplots is identical across panels because this diagnostic
comparison is comparing multiple scenarios from the same base model run (we frequently use these
same diagnostics to compare one week’s run to the last). Here, for example, we can see the average
effect of mobility is to increase log beta by 0.095 for each 1% increase towards normal movement. We
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can also see the effect of the bounds on coefficients such as mask use in that the model frequently
would prefer a larger impact of masks but is bounded by our a priori assumption (as described in the
mask use section 3.4).

Appendix 1 Figure 11 shows the resultant £ fit from the regression (panel B before the dashed line). This
is then used to forecast new infections in the SEIR model and the corresponding R, is plotted in panel
A. A deeper diagnostic on this 8 regression is shown in Appendix 4 Figure 5, analogous to panels C and D
in Appendix 1 Figure 11. In the detailed diagnostic,draw level difference are calculated between the
‘observed’ f (the B that came out of the f fitting described in Sl Section 5.1.3) and the predicted § from
the S regression. This difference is displayed, by draw, in panel C, and the overall distribution of draw-
level root-mean squared errors (RMSEs) from April 1 to present is shown in panel D. Here we see the
median RMSE is 0.09, with a range from 0.03 to 0.2. Finally, in panel E, we display the changes in the
RMSE as we shorten the range of residuals we use to calculate it. For example, we see that if we only
look at the residuals over the last few weeks, the range of RMSEs grows substantially, but the median is
less than 0.125.

Going back to Appendix 1 Figure 11, panel D shows the calculated beta residual mean used in the
adjustment of § as described in Section 5.3. Using this adjustment, and the forecasted covariates we get
our final forecasted S8 (panel B after the dashed line). Here we see that the model was systematically
under-estimating by about 0.26 (thus giving us a positive residual beta) and thus our § estimate from
our regression was increased correspondingly. This final § is then re-run through the SEIR model to
estimate daily infections (panel E) and using the IFR and infection-to-death delay we estimate daily
deaths. These daily deaths (in death rate space) are used in the re-implementation scenario. We can see
in California, we predict a mandate re-implementation would be justified on October 15 (based on the
red line dropping on that day in panel E) but its effect on deaths is not seen until October 25 (based on
the red line dropping on that day in panel F). Finally, results by day are aggregated to given cumulative
cases by scenario and drawn and displayed on panels G and H, respectively).

Digging into the results for California, we see a large predicted increase in infections and deaths later in
the year (even in the mask scenario, Appendix 1 Figure 11, panels E and F). Going to the covariates in
Appendix 1 Figure 12, we see that mask use is already at 62%, and testing is already at 0.00325, so there
is not much room for improvement. Conversely, mobility was never estimated to be extremely low and
is projected to only be 15% below normal by the end of the year in the mandate easing scenario. Thus,
the main time-varying covariate that changes in the remainder of 2020 is the pneumonia seasonality
covariate, and it is this covariate that drives our estimated increases.

6.5.2 Exemplar 2: New York

Following the same path through the diagnostics for New York as we did for California, we start with
Appendix 1 Figure 68, panel G, and the estimated daily deaths. In this panel, reported data on daily
deaths, daily infections, and daily hospitalisations are combined and fit to a spline to produce 1,000
draws of estimated daily deaths. We can see the huge peak in deaths observed in mid-April and the
substantial and sustained decline since that point.

Regarding the covariates, shown in Appendix 1 Figure 68, panels A through F, we also see that mobility
reached much lower levels in New York than California but has already returned to being only 27%
below baseline. Testing rose dramatically in June and has stayed relatively stable; mask use also climbed
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in the same time period to approximately 60%. Panels | through R of the same figure show coefficients
fit to each covariate. Because most coefficients are based on a global fit, they remain the same across
locations; the exception is the location-specific random intercept, shown in panel R.

Appendix 4 Figure 33 shows the ‘observed’ and predicted § for New York. Although our regression
predicts a decline in transmission in New York, our covariates are unable to capture the steepness of this
decline (as shown by the large negative residuals in late July and August; see panel C). This translates
into a relatively large RMSE when we only focus on the last few weeks of data (panel E). This in turn
translates into a relatively large adjustment based on the residual averaging for §; these residuals can
be seen in Appendix 1 Figure 67, panel D. Our final 8 forecast (Appendix 1 Figure 67, panel B) does show
a predicted increase in transmission intensity, but as can be seen from the corresponding R,z plot
(panel A), R, is substantially lower than 1 and our forecast expects relatively little transmission. This
is, of course, both a function of the model fit and the relatively large fraction of the population that has
already been exposed (estimated here to be 20%), reducing R, .

6.5.3 Exemplar 3: Texas
We chose Texas as our third exemplar because, like New York, it has already experienced substantial
transmission, but like California we expect it to experience substantial transmission in the future.

Following the same path through the diagnostics as we did for California and New York, we start with
Appendix 1 Figure 90, panel G, and the estimated daily deaths. There was evidence of an outbreak in
May and June, but more worrying there is evidence of a larger outbreak beginning in July and ongoing.
This is based on both daily death data and daily case data.

Reviewing model covariates in Appendix 1 Figure 90, panels A through F, we see that testing has actually
come down in recent weeks and mask use appears to have stabilised since early August. With relatively
high mobility, low testing, and the pneumonia seasonality at its low point now, it is not surprising that
we expect more transmission in the future. Note here that the daily death rate is currently at a point
where our mandate-reimposition scenario would expect mandates to be re-imposed (as can be seen
from the precipitous drop in mobility, panel B).

From Appendix 4 Figure 44 we can see that, similar to New York but going in the other direction, our
model did not expect the most recent outbreak in Texas (panel C, positive residuals from mid-June
forward). Given our model missing this outbreak, it is not surprising that residual averaging adjustment
(Appendix 1 Figure 89, panel D) is positive, indicating an upwards adjustment of or forecasted £.
Combining this adjustment with an estimated R, s greater than 1 (Appendix 1 Figure 89, panel A) with
covariates that in aggregate do not reduce S leads to estimates of a continued outbreak in the
mandates easing scenario (panel E). In the reference scenario, mandates are re-imposed reducing
mobility and thus 8, leading to an R, less than 1 and a decline in transmission. However, in that
scenario (and the mask scenario) we do expect  to grow for the rest of the year and in both scenarios,
R, r eventually surpasses 1. As all covariates except for pneumonia seasonality are relatively constant in
the last two months of the year, this increase can be clearly attributed to our seasonal driver. Texas is
also a good example of the complex relationship between f and R.: although the j for the mandate
easing scenario is the highest, the R, is the lowest in December (due to a depletion of susceptibles). It
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is difficult to see, but within the reference scenario there is also a second re-imposition of mandates at
the end of 2020 as deaths climb past the re-imposition threshold (Appendix 1 Figure 89, panels A, B, E;
Appendix 1 Figure 90, panel B). This occurs so late in the year that its impact is not however seen in
deaths themselves (Appendix 1 Figure 89, panel F).

7 Final data combination and summarization

The transmission model produces 1,000 full time series (including projections) of infections and deaths.
We summarise draws into means and 95% Uls for reporting. To control for extreme values, the top 2.5%
and bottom 2.5% of draws are dropped and replaced through random resampling of the remaining 950
draws. The summarised deaths and infections are then used as inputs to the hospital resource use
microsimulation (see Sl Section 7).

7.1 Scenarios

In all scenarios, schools are assumed to reopen on 15 August, 2020 and mobility is projected to increase
as outlined in Sl Sections 3.1 and 3.2. We estimate the likely bounds on the trajectory of the epidemic by
state by investigating three main scenarios: (1) continued removal of social distancing mandates (2)
reimposition of social distancing mandates after a threshold of daily deaths is reached, and (3) adoption
of universal masking together with threshold induced mandate re-imposition.

The “mandates easing” scenario models what would happen in each state if the current pattern
of lifting social distancing mandates continues and new mandates are not imposed; the model identifier
for this scenario is 2020_08_21.04.

As a more plausible scenario, we use observations from the first phase of the pandemic to
predict the likely response of state and local governments during the second phase. This plausible
reference scenario assumes that in each location the trend of easing SDM will continue at its current
trajectory until the daily death rate reaches a threshold of 8 deaths per million. If the daily death rate in
a location exceeds that threshold, we assume that SDM will be reintroduced for a six-week period. The
choice of threshold (of a rate of daily deaths of 8 per million) represents the 90 percentile of the
distribution of daily death rate at which US states implemented their mandates during the first months
of the COVID-19 pandemic. We selected the 90t percentile rather than the 50t percentile to capture an
anticipated increased reluctance from governments to re-impose mandates because of the economic
effects of the first set of mandates. In locations that do not exceed the threshold of a daily death rate of
8 per million, the projection is based on the covariates in the model and the forecasts for these to 28
February 2021. In locations were the daily death rate exceeded 8 per million at the time of our final
model run for this manuscript (21 September, 2020), we are assuming that mandates will be introduced
within 7 days. The model identifier for this scenario is 2020_08_22.01.

The final boundary scenario of universal mask wearing evaluates what would happen if 95% of
the population in each state always wore a mask when they were in public. This value was chosen to
represent the highest observed rate of mask use observed globally during the COVID-19 pandemic
through June of 2020 (SI Section 3.4). In this scenario, we also assume that if the daily death rate in a
state exceeds 8 deaths per million, SDMs will be reintroduced for a six-week period. The model identifier
for this scenario is 2020_08_22.02.

Two additional, derivative scenarios were included to assist understanding and policy resolution
of these main framework scenarios: a less comprehensive mask scenario of 85% public use of masks and
a scenario of universal mask wearing in the absence of any additional NPIs. The less comprehensive
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mask wearing scenario evaluates what would happen if 85% of the population in each state always wore
a mask when they were in public. As with the universal mask scenario, we also assume that if the daily
death rate in a state exceeds 8 deaths per million, SDMs will be reintroduced for a six-week period. The
model identifier for this scenario is 2020_08_22.07. Universal mask use by 95% of the population was
also evaluated in a scenario that assumes no imposition of other NPIs at any threshold value of daily
deaths. The model identifier for this scenario is 2020 08 22.07. Cumulative deaths for 21 September
2020 through 28 February 2021, maximum estimated daily deaths per million population, date of
maximum daily deaths, and estimated Reffective on 28 February 2021 for these additional derivative
scenarios are available in Supplemental Information Table 12.

All scenarios presume an increase in mobility associated with the opening of schools across the
country.

8 Hospital resource use microsimulation

The hospital use microsimulation is run for each projected death across time and across death-draws.
For each death, we:

1. Simulate the age of the deceased using normalised estimated mortality rates as the probability
for belonging to that age. That is, we assign the death to ageBin; with probability
MRggepin;(10¢) /ZiMRgg4epin,(loc). Call this Ap. See Section 5.1 for more details.

2. We determine how many days prior to death the deceased entered the hospital. Based on data
from New York State we set this to be 6 days prior to death.

3. We assign the deceased to an ICU bed for their entire admittance period.

4. Basedon Ap, we use H: D, to estimate the number of individuals of the same age group that
would have entered the hospital on the same day as the deceased to result in 1 death in that
age group on the date of death. This age-hospital-cohort will pass through the hospital and all
are assumed to survive. See section 5.4 for further details.

5. For each individual in the age-hospital-cohort, they have a 6.3% chance of getting admitted to
the ICU (see note below on derivation of 6.3%).

a. Those that visit the ICU are assumed to have a hospital stay of 20 days, the middle 13 of
which are in the ICU.

b. Those that don’t visit the ICU are released after eight days.

6. To determine ventilation use, we assume 85% of individuals in the ICU require invasive
mechanical ventilation based on data from New York State.

By performing this simulation for each death, and each associated member of the age-hospital-cohort,
we are able to summarise future hospital usage needs for general beds, ICU beds, and ventilators.
Finally, using a combination of data sources, we compare the estimated number of general beds and ICU
beds with availability.

34



Notes:

1. Based on hospital data from New York State up through Mar 31, 2020, the average ICU bed
counts to hospital census was 25%. Given the assumptions about lengths of stay for those who
die, those who recover, and their duration in the ICU, the conditional probability of a recovering
patient going to the ICU was back calculated to be 6.3% to keep the long-term ICU usage at 25%.
When possible, location-specific hospitalisation data is used to calculate the probability of a
recovering patient going to the ICU. In the absence of data from a particular location, the mode
is used and the ICU admission probability is calculated to be 8.8% for a recovering patient.

9 Sensitivity analyses

To assess the impact of our model formulation and associated assumptions on our future predictions,
we have conducted a number of sensitivity analyses. Here we present two different types of model
assessment: out-of-sample (OOS) predictive validity and assessment on future predictions. For both
assessments, we consider the following five alternative model formulations: 1) the base model without
the mask covariate; 2) the base model without the pneumonia seasonality covariate; 3) the base model
without the mobility covariate; 4) the base model without the testing covariate; and 5) the model with
all of the covariates, but without the constraints on the covariate coefficients other than directional
constraints.

We conduct this sensitivity analysis periodically to assess changes in model performance through time.
As discussed below for mobility, the fitted relationship between any individual covariate and observed
transmission may change over time, either increasing or decreasing its perceived importance. Here we
present the last two sets of sensitivity analyses. It is important to note that these regressions are fit
globally to 400+ locations (although here we present how well the model fits in just the US.

9.1 OOS predictive validity analyses

For the OOS predictive validity analyses, we dropped a set number of weeks of data, re-ran the entire
model fitting pipeline and then compared cases and deaths predicted by week compared to the
cumulative US input death estimates for the publication run. In these experiments, we used the
observed values of the covariates as opposed to forecasting based on the state of those covariates eight
weeks ago. Here we present two of these analyses: dropping eight weeks of data and dropping four
weeks of data. Analyses 1 was run based on all data accumulated by July 4™, while Analyses 2 was run
based on all data accumulated through August 14" (associated with the models presented in the main
text). On those dates, there were several states which did not have available data on the last few days
before the cutoff. As such, using our knowledge on those dates as the observed universe, we did not
have a full set of “ground truth” for the final week and the comparisons are thus across seven weeks and
three weeks, respectively.

These two sets of our analyses highlight difficulties in capturing rapid changes in transmission intensity
with covariates that might not vary at the same rate. In the first analyses, we generally overestimated,

and the pneumonia seasonality covariate helped constrain the predicted (and not realised) increases in
transmission. In the second analyses, the all models in the first sub-experiment missed the outbreak in

mid-July and August and as such the covariate that was previously reining in transmission (pneumonia

seasonality) appeared to exacerbate already overly low predictions. Interestingly, in the second sub-
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experiment within the second analyses (which included some of that mid-July / August outbreak), all
models appeared to have the information they needed to successfully predict the rest of the way.

9.1.1 8-week OOS analyses

9.1.1.1 Analyses 1

After dropping all data back to May 9th and rerunning the entire COVID pipeline (except covariate
prediction) we found the inclusion (or rather exclusion) of any of the time-varying covariates had
substantial influence on predictive validity (Sl Figure 7). The worst performing model, by far, was the
model that excluded pneumonia seasonality as a covariate. The model that excluded masks was also
substantially inferior to the base model. Conversely, models that excluded mobility or testing out-
performed the full model. Finally, as expected, a model that ignored biologically plausible maximum
impacts of the covariates (‘Unconstrained’ in Sl Figure 7) was also superior to the model with the
constraints in place.

At the end of the 4" week of the predictions (June 6%), full model over-estimated deaths by 13,300
deaths. While every model assessed here over estimated deaths, the model without pneumonia
seasonality over-estimated the cumulative number of deaths by 17,900 (34% higher than the full
model), while the model without masks estimated 16,800 more deaths than observed (26% higher than
the full model). The model without mobility only over-estimated cumulative deaths by 5,600 deaths
(41% of the full model’s error), while the model without testing over-estimated cumulative deaths by
8,700 deaths (65% of the full model’s error). The unconstrained model performed similarly to that of the
model without testing, over-estimating cumulative deaths by 8,100 (61% of the full model’s error).

At the end of the 7" week of predictions (June 27%"), both the magnitudes of the errors as well as the
relative differences grew substantially. The full model over-estimated cumulative deaths by 48,700
deaths. The model without the pneumonia seasonality covariate produced massive estimated death
counts, over-estimating by 83,900 deaths (172% the error of the full model). Excluding masks also
continued to result in large over-estimations, predicting 71,100 more deaths than observed by June 27t
(146% the error of the full model). The models that outperformed the full model increased their
dominance. The model without testing predicted 20,400 more deaths than observed (50% the error of
the full model), while the unconstrained model predicted 21,600 more deaths than observed (50% the
error of the full model. Finally, the model without mobility tracked actual cumulative deaths well, and
‘only’ over-estimated by 9,900 deaths (26% the error of the full model).

9.1.1.2 Analyses 2

After dropping all data back to June 23™ and rerunning the entire COVID pipeline (except covariate
prediction) we again found the inclusion (or rather exclusion) of any of the time-varying covariates had
substantial influence on predictive validity (Sl Figure 8). In this OOS analyses, the model predicted fewer
infections and deaths than observed across all experiments and the runs that included the pneumonia
seasonality covariate (which from July to August would contributed to lowering transmission intensity
performed worse than the run which dropped this covariate. The experiment without the testing
covariate also did better than the full model (or the unconstrained model). Again, based on the
understanding of transmission from the beginning of the outbreak to June 23™, we would have expected
both increases in testing and decreases due to seasonality to result in fewer infections and death than
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were observed (that is to say, the outbreak in mid-July to August was unexpected based on what we had
seen from the beginning of the outbreak up to June 23"

At the end of the 4" week of the predictions (July 22"), all models were still performing well, with all
errors less than 2,200 deaths (Sl Figure 8) compared to an observed cumulative number of deaths of
142,278. The model that excluded pneumonia seasonality outperformed the full model with a slight
overestimation of the outbreak (212 more deaths than observed) and the no-testing and no-masks
models also had closer estimates of deaths than the full model, underestimating by 754 and 1,064
deaths respectively. The full model performed better than the unconstrained model underestimating by
1,257 deaths compared to underestimating by 1,900 deaths and the model that removed mobility
performed the worst, underestimating by 2,148 deaths.

In the exercise where we forecasted the June 23rd model forward 7 weeks (August 11th), all models
underestimated the magnitude of the outbreak by at least 13,340 deaths. The ‘best’ model was again
the one that dropped the pneumonia seasonality. The rest of the models were all very comparable with
underestimations that missed between 13,340 deaths (for the model that dropped testing) and 18,555
deaths (for the model without mobility).

9.1.2 4-week OOS analyses

9.1.2.1 Analyses 1

After dropping all data back to June 6 and rerunning the entire COVID pipeline (except covariate
prediction) we again found the inclusion (or rather exclusion) of any of the time-varying covariates had
substantial influence on predictive validity (Sl Figure 9). Again, the worst performing model, by far, was
the model that excluded pneumonia seasonality as a covariate. Interestingly, the next worst model was
the one that excluded testing. The model that excluded masks was again inferior to the base model. The
models that excluded mobility or removed constraints were again superior to the full model, but the
superiority was diminished relative to the same forecast horizon comparisons in the 8-week analyses.

At the end of the 3™week of the predictions (June 27%"), full model over-estimated deaths by 5,000
deaths. Again, every model assessed here over estimated cumulative US deaths. The model without
pneumonia seasonality over-estimated the cumulative number of deaths by 6,100 (23% higher than the
full model), the model without testing over-estimated cumulative deaths by 5,300 (7% higher than the
full model, and the model without masks estimated 5,100 more deaths than observed (4% higher than
the full model). The model without mobility over-estimated cumulative deaths by 3,100 deaths (62% of
the full model’s error), while the unconstrained model over-estimated cumulative deaths by 4,000
deaths (80% of the full model’s error).

9.1.2.2 Analyses 2

After dropping all data back to July 21t and re-running the pipeline (SI Figure 10) we see marked
differences in performance compared to the 8-week OOS of Analyses 2. Here every model appears to
have the information needed to capture the increases seen in the past 4 weeks. From July 215 to August
14%™ there were an estimated 14,514 deaths, and all experiments were able to produce estimates within
1,000 (though all were underestimates). The full model and the full model without constraints
underestimated the most, missing the observed number of deaths by 990 and 985 respectively, with the
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model that dropped mobility being third worst underestimating deaths by 968 deaths. The models that
dropped either masks, pneumonia seasonality, or testing all performed similarly with each
underestimating by fewer than 500 deaths (482, 380, and 381, respectively). It should be noted that
although not displayed in the figure diagnostic, in the 4™ week all models continued to perform well, but
the relative rankings were almost inverted (with the full model and the full model without constraint
performing the best and the model without pneumonia seasonality performing the worst, albeit still
quite well).

9.1.3 Mobility and the changing transmission landscape

While the OOS analysis strongly supports the inclusion of covariates that track masks and pneumonia
seasonality (as the exclusion of these covariates greatly degraded the model’s predictive performance),
there was also a strong indication that the mobility covariate was detrimental to the performance of the
model. While these results certainly warrant further investigation, there are several clear observations
that can already be made. As has been noted elsewhere, while declines in mobility strongly correlated
with declines in transmission early in the outbreak, the correlation was more muted as mobility
returned to normal levels®!. One plausible hypothesis for this is that human behaviour was altered
during the course of the outbreak and a measured level of ‘mobility’ did not mean the same in February
and March as it did in April and beyond. As an example, mask usage had greatly increased over this time.

The current model formulation fits a regression to transmission intensity using the entire past of the
outbreak, equally weighting each day’s residual with each other day. As such, an 8-week OOS test would
have relatively few days post-rebound of mobility and relatively many days when mobilities decline was
strongly tied to that of transmission. Likewise, the 8-week OOS test would contain relatively few days
that underscored the importance (and high usage) of masks. To dig a little deeper into this potential
explanation for some of the superiority of the mobility-free model, we looked at the fitted coefficient on
mobility for the 8-week and 4-week OOS full models and compared them to the production run. As can
be seen in Sl Figure 12, the effect of mobility on transmission intensity has decreased as more post-
rebound data has entered the model. As has been seen over the weeks at the end of June and beginning
of July, 2020, reductions in social distancing are coincident with increases in transmission. As such, it
seems impractical to fully remove mobility from a model of COVID. That being said, the OOS assessment
must be repeated continually to fully understand the impact of these covariates on model utility.

9.2 Assessment of future predictions

A different sort of sensitivity analysis that can complement the predictive validity assessment is one that
investigates potential changes in the final conclusions of the study to altered assumptions. To this end,
we re-predicted COVID transmission and deaths through the end of 2020 using all available data but
using the altered model formulations described above. The OOS analyses illustrated the importance of
investigating the impact of each covariate in the model predictions, as the mobility and mask covariates
are directly tied to two of the three scenarios presented in this manuscript. Thus, the scenario we
considered was the worst-case, mandate easing scenario.

9.2.1 Analyses 1

In the scenario where mandates are eased with no re-implementation, the estimated number of COVID
deaths by October 1% was 184,900 from the full model. Although the pneumonia seasonality covariate
indicates an increase in transmission risk in the fall, the model without pneumonia seasonality estimated
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202,900 deaths on October 1 (10% larger than the full model). The model without testing and the
model without masks were very similar to the full model, with 186,400 and 186,600 deaths respectively
(both 1% larger than the full model). The model without mobility and the unconstrained model both
produced lower estimated by October 1%, with 175,800 and 174,700 deaths, respectively (both 95% the
magnitude of the full model). In general, there was agreement across all the models as to the magnitude
of the loss of life due to COVID by the beginning of October.

Alternatively, there were substantial deviations across the model predictions from October through the
remainder of the year. In the mandate-easing scenario, the full model predicts 399,900 deaths by
January 1°t. The model without pneumonia seasonality predicted a massive outbreak in the last 3
months of 2020, with and an estimated 845,200 total COVID deaths by January 1% (211% the full model
value). This came from an almost doubling in total deaths in both November and December (November
15t: 273,500 cumulative deaths, December 1°: 445,800 cumulative deaths). Both the model without
masks and the model without testing produced final death values 29% higher than those of the full
model by January 1°* (515,000 and 514,100 respectively). The unconstrained model continued to
produce fewer deaths than the full model, but still ended estimating 369,400 deaths by January 1 (92%
the full model). Just as the model without pneumonia seasonality estimated a massive outbreak in the
last 3 months of 2020, the model without mobility estimated a large reduction in transmission over the
last 3 months, estimating 49,600 deaths from October 1° to the end of the year. While this is a huge loss
of life, it must be noted that the scenario used here is the worst-case scenario presented, and compared
to the other models’ estimates, 49,600 deaths is substantially smaller than other models. The final
estimated death total is 225,400 which is 56% of the full models’ estimates.

In the current COVID transmission landscape (where mandate re-imposition is being considered due to a
resurgence in cases and deaths), it is possible that the effect of mobility (or any other covariate) will
change once again. It remains critical to continually re-evaluate the inclusion (or exclusion) of any
covariate as well as assess their impact.

9.2.2 Analyses 2

In the scenario where mandates are eased with no re-implementation, the estimated number of COVID
deaths by October 1% was 222,753 from the full model. The model without pneumonia seasonality, the
model without testing and the full model without constraints all predicted deaths within 500 of this
(222,252, 223,137, and 222,425, respectively) while the model without masks or without mobility had
deviated by more than 3,000 by October 1 (225,943 and 217,069, respectively).

The differences between models substantially increase from October 1 through the end of the year.
The full model estimates 569,354 deaths by 1 January 2021 without any mandate re-imposition. Models
without masks, testing, or constraints all produce much higher results (637,419 deaths, 713,618 deaths
and 668,746 deaths, respectively). Conversely, models without mobility or pneumonia seasonality
estimate substantially fewer deaths (399,206 and 332,491, respectively). As with the results of this
sensitivity analysis for Analyses 1, it must be noted that these results are in the absence of any of the
scenarios that control for future infections (e.g., mandate re-imposition or increases in mask use). The
differences in those settings would naturally be smaller as the total number of infections would be
reduced. Of course, we did not attempt that comparison as it would not work in the scenarios where the
alteration occurs on a covariate that is dropped from the model. Nonetheless, these two analyses
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underscore the need to repeatedly re-evaluate both the performance of the overall model as well as the
utility of each covariate in the model to most accurately capture changes in the SARS-CoV-2
transmission landscape.
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Supplementary Figures

S| Figure 1. Schematic representation of modelling process. Numbers correspond to
Supplementary Information sections detailing each portion.
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Sl Figure 2 Time trends and relationship with deaths for cumulative cases and

hospitalisations in Florida.
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S| Figure 3 Estimated death curve in cumulative and In(daily) in Florida. Samples from
refit model are shown in In(daily) plot.
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S| Figure 4. Trends of the number of mandates (out of 6) on for each location in the
modelling hierarchy

All locations
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Each line represents a country, and the number of mandates implemented on a given date is shown on
the Y axis. By the middle of March, most countries around the world had implemented at least 5
mandates.
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Sl Figure 5. Time trends of the average number of mandates “on” for each region of the

world.
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Sl Figure 6. MR-BRT model of the US pattern of seasonality of logit ratio vs week.
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The black line shows the model estimates, the blue points are data included in the model, and the red

points are data excluded from the model.
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S| Figure 7. Eight week out-of-sample predictive validity (July 4 model run)
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Figure panels display the results of fitting and predicting our model when holding out eight-weeks of
death and case data, based on input data and covariates as of July 4. We ran our reference model
(bottom row, red line) and models in which we dropped a single time varying covariate from the
regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’)
the priors. The predictions from these models are shown on the bottom row. The top left panel shows
all these models compared to the observed cumulative deaths in the United States (white dots). The
upper right panels show the out-of-sample error, binned by week, in both natural and absolute error.
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S| Figure 8. Eight-week out-of-sample predictive validity (August 21 model run)
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Figure panels display the results of fitting and predicting our model when holding out eight-weeks of
death and case data, , based on input data and covariates as of August 21. We ran our reference model
(bottom row, red line) and models in which we dropped a single time varying covariate from the
regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’)
the priors. The predictions from these models are shown on the bottom row. The top left panel shows
all these models compared to the observed cumulative deaths in the United States (white dots). The
upper right panels show the out-of-sample error, binned by week, in both natural and absolute error.
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S| Figure 9. Four-week out-of-sample predictive validity (July 4 model run)
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Figure panels display the results of fitting and predicting our model when holding out four weeks of
death and case data, based on input data and covariates as of July 4. We ran our reference model
(bottom row, red line) and models in which we dropped a single time varying covariate from the
regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’)
the priors. The predictions from these models are shown on the bottom row. The top left panel shows
all these models compared to the observed cumulative deaths in the United States (white dots). The
upper right panels show the out-of-sample error, binned by week, in both natural and absolute error.
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Sl Figure 10. Four-week out-of-sample predictive validity (August 21 model run)
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Figure panels display the results of fitting and predicting our model when holding out four weeks of

death and case data, based on input data and covariates as of August 21. We ran our reference model

(bottom row, red line) and models in which we dropped a single time varying covariate from the

regression (no masks, no mobility, no pneumonia seasonality, and no testing per capita). Bayesian priors
are used on the coefficients for these covariates and so in a last model we removed (‘unconstrained’)
the priors. The predictions from these models are shown on the bottom row. The top left panel shows

all these models compared to the observed cumulative deaths in the United States (white dots). The

upper right panels show the out-of-sample error, binned by week, in both natural and absolute error.
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S| Figure 11. Fitted coefficient on mobility for the 8-week and 4-week out-of-sample and
full “production run” versions of the model (July 4 model run)
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S| Figure 12. Fitted coefficient on mobility for the 8-week and 4-week out-of-sample and
full “production run” versions of the model (August 21 model run)
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Supplementary Tables

SI Table 1. GATHER compliance
# Checklist item Location

Objectives and funding

1 Define the indicators, populations, and Main manuscript
time periods for which estimates were
made.
2 List the funding sources for the work. Main manuscript
Data Inputs

For all data inputs from multiple sources that are synthesised as part of the study:

3 Describe how the data were identified and Sl Sections 2-3
how the data were accessed.

4 Specify the inclusion and exclusion Sl Sections 2-3
criteria. Identify all ad-hoc exclusions.

5 Provide information on all included data Sl Section 2, Sl Tables 2-10
sources and their main characteristics. For
each data source used, report reference
information or contact name/institution, See data availability statement in main manuscript; Sl

population represented, data collection Section 2, Sl Tables 2-10

method, year(s) of data collection, sex and

age range, diagnostic criteria or

measurement method, and sample size, as

relevant.

6 Identify and describe any categories of SI Section 2, SI Tables 2-10
input data that have potentially important
biases (e.g., based on characteristics listed
in item 5).

For data inputs that contribute to the analysis but were not synthesised as part of the study:

7 Describe and give sources for any other See data availability statement in main manuscript; Sl
data inputs. Section 2, Sl Tables 2-10

For all data inputs:
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8 Provide all data inputs in a file format See data availability statement in main manuscript; Sl
from which data can be efficiently Section 2, Sl Tables 2-10; data source files linked directly
extracted (e.g., a spreadsheet as opposed  from the online version of the paper
to a PDF), including all relevant meta-data
listed in item 5. For any data inputs that
cannot be shared due to ethical or legal
reasons, such as third-party ownership,
provide a contact name or the name of
the institution that retains the right to the
data.

Data analysis

9 Provide a conceptual overview of the data  Main manuscript, Sl Figure 1, Sl Section 2, Sl Tables 2-10
analysis method. A diagram may be
helpful.

10 Provide a detailed description of all steps Sl Sections 2, 4-7
of the analysis, including mathematical
formulae. This description should cover, as
relevant, data cleaning, data pre-
processing, data adjustments and
weighting of data sources, and
mathematical or statistical model(s).

11 Describe how candidate models were Sl Sections 2, 4-7
evaluated and how the final model(s)
were selected.

12  Provide the results of an evaluation of S| Sections 2, 4-7
model performance, if done, as well as the
results of any relevant sensitivity analysis.

13 Describe methods for calculating Sl Sections 2, 4-7
uncertainty of the estimates. State which
sources of uncertainty were, and were
not, accounted for in the uncertainty

analysis.

14  State how analytic or statistical source Code is provided in online repositories:
code used to generate estimates can be https://github.com/ihmeuw/covid-model-seiir-
accessed. pipeline

https://github.com/ihmeuw/covid-model-deaths-
spline

Results and Discussion
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15

16

17

18

Provide published estimates in a file
format from which data can be efficiently
extracted.

Report a quantitative measure of the
uncertainty of the estimates (e.g.
uncertainty intervals).

Interpret results in light of existing
evidence. If updating a previous set of
estimates, describe the reasons for
changes in estimates.

Discuss limitations of the estimates.
Include a discussion of any modelling
assumptions or data limitations that affect
interpretation of the estimates.

Sl Tables 2-10

Results specific to the model run for this publication
are available for download
(https://ihmecovid19storage.blob.core.windows.net/a
rchive/2020-10-02/ihme-covid19.zip).

Main manuscript

Online data visualization tool:
https://covid19.healthdata.org

Main manuscript

Main manuscript, Sl Sections 4-5
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SI Table 2. Sources for epidemiological data by state

Location

United States of America,
California

United States of America, South

Dakota

United States of America, Texas

United States of America, West

Virginia
United States of America,
Minnesota

United States of America, Texas
United States of America, Hawaii

United States of America, Florida

United States of America,
Maryland

United States of America,
Alabama

United States of America, New

Mexico

United States of America,
Nebraska

United States of America,
Delaware

United States of America,
Pennsylvania

United States of America, Maine

United States of America, New

Jersey
United States of America,
Massachusetts

United States of America, New

Hampshire

United States of America, Oregon
United States of America, Nevada

United States of America,
Connecticut

United States of America, Utah

Source

United States - California Department of Public Health Daily
COVID-19 Updates 2020

United States - South Dakota Department of Health Novel
Coronavirus (COVID-19) Updates and Information 2020

United States - Texas Department of State Health Service COVID-
19 Fatalities Over Time by County

United States - West Virginia Department of Health and Human
Resources Coronavirus Disease (COVID-19) Cases 2020

United States - Minnesota Department of Health Situation
Update for Coronavirus Disease 2019 (COVID-19) 2020

United States - Texas Department of State Health Service COVID-
19 Cases Over Time by County

United States - Hawaii Department of Health COVID-19 Current
Situation 2020

United States - Florida Division of Emergency Management
COVID-19 Data Report 2020

United States - Maryland Department of Health COVID-19
Statistics 2020

United States - Alabama Department of Public Health COVID-19
Data and Surveillance 2020

United States - New Mexico Department of Health 2019 Novel
Coronavirus Disease (COVID-19) Updates 2020

United States - Nebraska Department of Health and Human
Services Coronavirus COVID-19 Cases 2020

United States - Delaware Division of Public Health Coronavirus
Disease (COVID-19) Data Dashboard 2020

United States - Pennsylvania Department of Health COVID-19
Cases 2020

United States - Maine Division of Disease Surveillance Novel
Coronavirus 2019 (COVID-19) Situation 2020

United States - New Jersey Department of Health COVID-19 Data
2020

United States - Massachusetts Department of Public Health
COVID-19 Cases, Quarantine and Monitoring 2020

United States - New Hampshire Department of Health and
Human Services 2019 Novel Coronavirus (COVID-19) Summary
Report 2020

United States - Oregon Health Authority COVID-19 Updates 2020
United States - Nevada Department of Health and Human
Services COVID-19 (Coronavirus) Data 2020

United States - Connecticut Department of Public Heath COVID-
19 Update 2020

United States - Utah Department of Health Overview of COVID-
19 Surveillance 2020
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Location

United States of America,
Colorado

United States of America, Arizona

United States of America,
Wyoming

United States of America,
Montana

United States of America,
Oklahoma

United States of America,
Michigan

United States of America, lllinois

United States of America,
Tennessee

United States of America, New
York City (as a subset of New York
State)

United States of America, Georgia

United States of America, lowa

United States of America,
Wisconsin

United States of America,
Louisiana

United States of America,
Mississippi

United States of America, North
Dakota

United States of America,
Arkansas

United States of America, Idaho

United States of America, North
Carolina
United States of America, Missouri

United States of America, Alaska

United States of America, South
Carolina

Source

United States - Colorado Department of Public Health and
Environment COVID-19 Updates 2020

United States - Arizona Department of Health Services COVID-19
Data 2020

United States - Wyoming Department of Health COVID-19 Map
and Statistics 2020

United States - Montana Department of Health and Human
Services COVID-19 Cases 2020

United States - Oklahoma State Department of Health COVID-19
Current Situation 2020

United States - Michigan Department of Health and Human
Services Coronavirus Data 2020

United States - lllinois Department of Public Health Coronavirus
Disease 2019 (COVID-19) Statistics 2020

United States - Tennessee Department of Health Epidemiology
and Surveillance Data 2020

United States - New York City Department of Health and Mental
Hygiene Coronavirus Disease 2019 (COVID-19) Data 2020

United States - Georgia Department of Public Health COVID-19
Daily Status Report 2020

United States - lowa Department of Public Health Novel
Coronavirus (COVID-19) Cases 2020

United States - Wisconsin Department of Health Services COVID-
19 Data 2020

United States - Louisiana Department of Health Coronavirus
(COVID-19) Information 2020

United States - Mississippi State Department of Health
Coronavirus Disease 2019 (COVID-19) Current Cases and
Statistics 2020

United States - North Dakota Department of Health Coronavirus
Cases 2020

United States - Arkansas Department of Health COVID-19 Status
Updates 2020

United States - Idaho Division of Public Health COVID-19 Case
Data 2020

United States - North Carolina Department of Health and Human
Services COVID-19 Dashboard 2020

United States - Missouri Department of Health and Senior
Services COVID-19 Outbreak Data 2020

United States - Alaska Department of Public Health and Social
Services Coronavirus Response Hub 2020

United States - South Carolina Department of Health and
Environmental Control COVID-19 Demographic Data by Case
2020
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Location
United States of America, Virginia

United States of America, Ohio

United States of America, Rhode
Island

United States of America,
Vermont

United States of America, Indiana

United States of America, Kansas

United States of America,
Kentucky

United States of America,
Washington

United States of America,
Washington

Source

United States - Virginia Department of Health COVID-19 Cases
2020

United States - Ohio Department of Health COVID-19 Dashboard
2020

United States - Rhode Island Department of Health COVID-19
Data Tracker 2020

United States - Vermont Department of Health COVID-19 Data
2020

United States - Indiana COVID-19 Statewide Test, Case, and
Death Trends 2020

United States - Kansas Department of Health and Environment
Coronavirus Disease 2019 (COVID-19) Case Summary 2020
United States - Kentucky Department for Public Health COVID-19
Dashboard 2020

United States - Washington State Department of Health COVID-
19 Cases by County and CDC Event Date 2020

United States - Washington State Department of Health COVID-
19 Deaths by County, Date, Age Group and Sex 2020
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Sl Table 3. Alternate data repositories for state-level reporting

Location

Illinois

Maryland

Kentucky

Hawaii

Nebraska

North Carolina

Indiana

Washington

New York City (as a subset of New York State)

59

Source

United States - lllinois Department of Public
Health Coronavirus Disease 2019 (COVID-19)
Statistics 2020

United States - Maryland Department of Health
COVID-19 Statistics 2020

United States - Kentucky Department for Public
Health COVID-19 Dashboard 2020

United States - Hawaii Department of Health
COVID-19 Current Situation 2020

United States - Nebraska Department of Health
and Human Services Coronavirus COVID-19 Cases
2020

United States - North Carolina Department of
Health and Human Services COVID-19 Dashboard
2020

United States - Indiana COVID-19 Statewide Test,
Case, and Death Trends 2020

United States - Washington State Department of
Health COVID-19 Cases by County and CDC Event
Date 2020; United States - Washington State
Department of Health COVID-19 Deaths by
County, Date, Age Group and Sex 2020

United States - New York City Department of
Health and Mental Hygiene Coronavirus Disease
2019 (COVID-19) Data 2020



Sl Table 4. Ad hoc corrections made to the Johns Hopkins dataset
A file containing Sl Table 4 is hosted within the Global Health Data Exchange record (file name —
IHME_USA COVID 2020 2021 _MANDATES_CLOSURES REOPENING_Y2020M10D09.CSV) associated

with this publication http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-
2020-2021
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Sl Table 5. Data sources by state for COVID-19-specific hospitalisations

Location Data source

United States of United States - Alaska Department of Public Health and Social Services
America, Alaska Coronavirus Response Hub 2020

United States of The COVID Tracking Project

America
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Sl Table 6.

Covariates summary table

Covariate Definition Covariate Coefficient
Name (baseline model)
Time Social Categorical classification of social distancing N/A
varying | distancing mandates imposition and lifting
mandates
Mobility Composite indicator of multiple mobility 9.45E-3 (95% Ul:
sources, expressed as percent reduction from | 7.10E-3 to 1.21E-2)
"norm". Projected based on social distancing
mandates
Testing per Number of tests administered daily divided by | -25.9 (-54.6 to -6.37)
capita population per location
Mask Use Percentage of the population who "always" -0.502 (-0.520 to -
wear a mask 0.380)
Pneumonia Proportion of pneumonia deaths to total 1.035 (0.90 to 1.31)
seasonality deaths by week of the calendar year; by
location
Time LRI mortality age 15+ age-standardised LRI mortality rate by | 5.89E-4 (0.0 to 4.65E-
invariant location (time invariant, based on 2019 3)
results)
Altitude Proportion population below 100 m altitude 1.38E-3 (0.0 to 8.97E-
3)
Population Percentage of population living in areas more | 2.5E-6 (0.0 to 4.6E-6)
density dense than 1,000 ppl per square km
Smoking Smoking exposure per capita (time invariant) 1.38E-2 (0.0 to 0.102)
(Adult age-standardised [15+ years], both
sexes)
Air pollution Population-weighted annual mean PM2.5 2.00E-5 (0.0 to 1.38E-

exposure

4)
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Sl Table 7. Date of enactment, repeal, and source by state for social distancing mandates
A file containing Sl Table 7 is hosted within the Global Health Data Exchange record (file name — IHME_USA COVID 2020 2021 RAW_DATA CORRECTIONS_Y2020M10D09.CSV) associated with
this publication http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-2020-2021
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Sl Table 8. Listing of source of testing data for locations not present within Our World in
Data global dataset

Location

Albania

Angola

Armenia

Australia

Barbados

Benin
Botswana

Canadian
subnationals

Canadian
subnationals

Comoros

Congo

Costa Rica

Cote d'lvoire

Cyprus

Djibouti
Dominican

Republic

Democratic
Republic of
the Congo

Source

Albania Ministry of Health and Social Protection Updated
Information on COVID-19 2020

Angola Ministry of Health COVID-19 News 2020

Armenia National Center for Disease Control Coronavirus
Disease (COVID-19) Confirmed Cases by Days 2020

Coronavirus (COVID-19) in Australia 2020

Barbados Government Information Service COVID-19 Update
2020

Benin Coronavirus Information (COVID-19) 2020
Botswana COVID-19 Updates 2020

Canada Coronavirus Disease 2019 (COVID-19) Daily Epidemiology
Update 2020

Canada Public Health Infobase Number of Total Cases of COVID-
19 2020

Comoros Ministry of Health, Solidarity, Social Protection and
Gender Promotion COVID-19 Press Release

Congo COVID-19 Epidemiological Situation 2020

Costa Rica COVID-19 National Situation - Distance State
University 2020

Cote d'lvoire COVID-19: Update on the Situation of Coronavirus
Disease 2020

Cyprus Announcement of the Ministry of Health Regarding New
Cases of COVID-19 Disease 2020

Djibouti COVID-19 Statistics 2020

Dominican Republic General Directorate of Epidemiology
Coronavirus Disease 2019 (COVID-19) Special Bulletin 2020

Democratic Republic of the Congo Multisectoral Committee on
the Response to COVID-19 Bulletin 2020
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Tests reported

Individuals tested

Tests processed

Cases + Negatives

Tests processed

Tests processed

Tests processed
Tests processed

Individuals tested

Individuals tested

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed



Location

Equatorial
Guinea

Eswatini
Gabon
Gambia

Ghana
Guinea
Guinea
Bissau

Guyana

Honduras

Italian

subnationals

Japan

Madagascar

Mali

Mauritania

Mauritius

Mexico

Moldova

Mozambique

Source

Equatorial Guinea COVID-19 News - AhorakEG

Eswatini COVID-19 Dashboard 2020
Gabon COVID-19 Epidemiological Situation 2020
Gambia COVID-19 Situational Outbreak Report 2020

Ghana Health Service Coronavirus Disease (COVID-19) Updates
2020

Guinea Ministry of Health COVID-19 Epidemiological Situation
2020

Guinea-Bissau INFOCOVID-19 Update 2020

Guyana Ministry of Public Health COVID-19 Dashboard 2020

Honduras National Risk Management System COVID-19
Statement 2020

Italy COVID-19 Situation Monitoring - Department of Civil
Protection

Japan Coronavirus Disease (COVID-19) Situation Report 2020 -
Toyo Kazei Online

Madagascar Ministry of Public Health Coronavirus Situation 2020

Mali Ministry of Health and Social Affairs Communique on the
Monitoring of Prevention and Response Actions to Coronavirus
Disease 2020

Mauritania COVID-19 Situation Report 2020

Mauritius Ministry of Health and Wellness COVID-19 Statistics
2020

Mexico General Directorate of Epidemiology COVID-19 Database
2020

Moldova Epidemiological Situation Due to Infection with the
New Type of Coronavirus (COVID-19) 2020

Mozambique National Institute of Health COVID-19 Daily
Surveillance Bulletin 2020
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Tests reported

Tests processed

Individuals tested
Tests processed
Tests processed

Tests processed

Individuals tested

Tests processed

Individuals tested

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Individuals tested

Tests processed

Individuals tested



Location

Niger

Pakistan -
Sindh

Pakistan -
Punjab

Pakistan -
Khyber
Pakhtunkhwa

Pakistan -
Islamabad

Pakistan -
Gilgit-
Baltistan

Pakistan -
Balochistan

Pakistan -
Azad Jammu
and Kashmir

Brazil -
Pernambuco

Peru

Saint Kitts

Brazil - Santa
Catarina

Brazil -
Sergipe

Sierra Leone

South Africa
subnationals

Source

Niger Ministry of Public Health General Secretariat COVID-19
Communications 2020
Pakistan - Sindh COVID-19 Statistics 2020

Pakistan - Punjab COVID-19 Statistics 2020

Pakistan - Khyber Pakhtunkhwa COVID-19 Statistics 2020

Pakistan - Islamabad COVID-19 Statistics 2020

Pakistan - Gilgit-Baltistan COVID-19 Statistics 2020

Pakistan - Balochistan COVID-19 Statistics 2020

Pakistan - Azad Jammu and Kashmir COVID-19 Statistics 2020

COVID-19 in the World, in Brazil and in Pernambuco 2020

Peru Ministry of Health COVID-19 Situation 2020

Saint Kitts and Nevis COVID-19 Situation Report 2020

Brazil - Santa Catarina Coronavirus Epidemiological Bulletin 2020

Brazil - Sergipe Epidemiological Bulletin for Update on
Coronavirus Disease 2019 (Covid-19) 2020

Sierra Leone Coronavirus Disease (COVID-19) Situational Report,
April-May 2020

South Africa National Institute for Communicable Diseases
COVID-19 Weekly Epidemiological Brief 2020

66

Tests reported

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed
Individuals tested
Positives +
Negatives
Tests processed
Tests processed

Tests processed

Tests processed



Location

Spain -
Aragon

Spain -
Cantabria

Spain -
Navarra

Spain -
Navarra

Spain -
Castile y
Leon

Spain

Togo

United States
of America
States (apart
from
Washington)

Washington

Yemen

Spain - La
Rioja

Spain -
Balearic
Islands

Spain -
Asturias

Georgia

Malawi

Source

Spain - Aragon Open Data: Daily Facts and Figures About the
Coronavirus 2020

Spain - Cantabria Epidemiological Situation of COVID-19 2020

Spain - Navarra COVID-19 Tests Results Data 2020

Spain - Navarra New COVID-19 Series Evolution Data 2020

Spain - Castile and Ledn Open Data: Coronavirus Tests 2020

Spain Ministry of Health, Consumption, and Social Welfare
Coronavirus Disease (COVID-19) Current Situation Update 2020

Coronavirus in Togo: Evolution in Graphics 2020

United States COVID Tracking Project API - Historic State Data
2020

United States - Washington State Department of Health COVID-
19 Tests by County and Specimen Collection Date 2020

Yemen Covid-19 Daily Report for the Period from January to June
2020

Spain - La Rioja Epidemiological Situation of COVID-19 2020

Spain - Balearic Islands Ministry of Health and Consumption
News About the Coronavirus COVID-19 2020

Spain - Asturias Open Data: COVID-19 Evolution 2020
Georgia National Center for Disease Control and Public Health

COVID-19 Update 2020

Malawi COVID-19 National Information Dashboard 2020
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Tests reported

Tests processed

Total PCR tests

Total PCR +

Antibody Tests

Total PCR +
Antibody Tests

Total PCR tests

Total PCR tests

Tests processed

Various

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed

Tests processed



Location
Cape Verde
Namibia
Sudan

Central
African
Republic

Philippines

Niger

Brail - Minas
Gerais

Brail -
Rondonia

Jamaica
Jordan

Zambia

Indian
subnationals

Palestine
Bermuda

Lebanon

Oman

Guatemala

Palau

Source

Cape Verde COVID-19 Epidemiological Bulletin 2020

Namibia COVID-19 National Statistics 2020

Sudan Health Observatory COVID-19 Situation and Updates 2020

Central African Republic COVID-19 Daily Situation Report 2020

Philippines Department of Health COVID-19 Tracker 2020

Niger Ministry of Public Health General Secretariat COVID-19
Communications 2020

Brazil - Minas Gerais Coronavirus Epidemiological Bulletin 2020

Brazil - Rondonia Daily Newsletter on Coronavirus 2020

Jamaica Ministry of Health and Wellness COVID-19 Update 2020
Jordan Ministry of Health COVID-19 Updates 2020

Zambia Coronavirus Disease (COVID-19) Outbreak Situation
Report 2020

India COVID-19 Crowdsourced Patient Database: State Level
Testing Data 2020

Palestine Ministry of Health COVID-19 Surveillance System 2020
Bermuda COVID-19 Update 2020

Lebanon Ministry of Public Health COVID-19 Surveillance Data
2020

Oman Ministry of Health COVID-19 Statement 2020

Guatemala Ministry of Public Health and Social Assistance
COVID-19 Case Update 2020

Palau Ministry of Health Coronavirus Disease 2019 (COVID-19)
Situation Report 2020
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Tests reported
Tests processed
Individuals tested
Tests processed

Individuals tested

Tests processed

Tests processed

Tests processed in
public facilities

Tests processed

Tests processed
Tests processed

Tests processed

Various

Tests processed
Tests processed

Tests processed

Tests processed

Tests processed

Tests processed



SI Table 9. Infection fatality ratio data sources

Location
Belgium

Belgium

Denmark

Spain

Spain

Spain

Sweden

Sweden

Sweden

Date
13t™ June 2020

4% July 2020

17t April 2020

11t May 2020

1°t June 2020

22" June 2020

2" May 2020

9t May 2020

16" May 2020

Source

Sereina et al. 2020 “Seroprevalence of 1gG antibodies
against SARS coronavirus 2 in Belgium: a serial prospective
cross-sectional nationwide study of residual samples”
medRxiv
https://www.medrxiv.org/content/10.1101/2020.06.08.201
25179v3

Sereina et al. 2020 “Seroprevalence of 1gG antibodies
against SARS coronavirus 2 in Belgium: a serial prospective
cross-sectional nationwide study of residual samples”
medRxiv
https://www.medrxiv.org/content/10.1101/2020.06.08.201
25179v3

Erikstrup et al. 2020 “Estimation of SARS-CoV-2 infection
fatality rate by real-tme antibody screening of blood
donors” medRxiv
https://www.medrxiv.org/content/10.1101/2020.04.24.200
75291v1 full.pdf

Estudio ENE-COVID19 Segunda Ronda
https://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHE
ROS/INFORME SEGUNDA RONDA.pdf

Estudio ENE-COVID19 Segunda Ronda
https://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHE
ROS/INFORME SEGUNDA RONDA.pdf

Estudio ENE-COVID19 Informe Final
https://portalcne.isciii.es/enecovid19/informes/informe_fin

al.pdf

Folkhalsomyndigheten “Pavisning av antikroppar efter
genomgangen covid-19 hos blodgivare (Delrapport 2)”
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/
Folkhalsomyndigheten “Pavisning av antikroppar efter
genomgangen covid-19 hos blodgivare (Delrapport 2)”
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/
Folkhalsomyndigheten “Pavisning av antikroppar efter
genomgangen covid-19 hos blodgivare (Delrapport 2)”
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/
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Sweden

Brazil

Kenya

Nigeria

California,
United States

Connecticut,
United States

Connecticut,
United States

Connecticut,
United States

Florida, United
States

23" May 2020

21°* May 2020

16%™ June 2020

30" June 2020

27" April

3" May 2020

26" May 2020

17t June 2020

10t April 2020

Folkhalsomyndigheten “Pavisning av antikroppar efter
genomgangen covid-19 hos blodgivare (Delrapport 2)”
https://www.folkhalsomyndigheten.se/publicerat-
material/publikationsarkiv/p/pavisning-av-antikroppar-
efter-genomgangen-covid-19-hos-blodgivare-delrapport-2/
Hallal et al. 2020 “Remarkable variability in SARS-CoV-2
antibodies across Brazilian regions: nationwide serological
household survey in 27 states” medRxiv
https://www.medrxiv.org/content/10.1101/2020.05.30.201
17531v1.full.pdf

Uyoga et al. 2020 “Seroprevalence of anti-SARS-CoV-2 I1gG
antibodies in Kenyan blood donors” medRxiv
https://www.medrxiv.org/content/10.1101/2020.07.27.201
62693v1

Majiya et al. 2020 “Seroprevalence of COVID-19 in Niger
State” medRxiv
https://www.medrxiv.org/content/10.1101/2020.08.04.201
68112v1

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3¢27-41b3-
b46c-43c4a38bbe00

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f
ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-
b46c-43c4a38bbe00
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Florida, United
States

Louisiana,
United States

Minnesota,
United States

Minnesota,
United States

Minnesota,
United States

Missouri,
United States

Missouri,
United States

Missouri,
United States

New York,
United States

New York,
United States

24 April 2020

8™ April 2020

12t May 2020

7t June 2020

27% June 2020

26t April 2020

30t March 2020

20™ June 2020

1°* April 2020

28t April 2020

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f

ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-

b46c-43c4a38bbe00

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f

ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-

b46c-43c4a38bbe00

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f

ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-

b46c-43c4a38bbe00

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f

ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-

b46c-43c4a38bbe00

Rosenberg et al. 2020 “Cumulative incidence and diagnosis
of SARS-CoV-2 Infection in New York medRxiv
https://www.medrxiv.org/content/10.1101/2020.05.25.201

13050v1.full.pdf
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New York,
United States

New York,
United States

Pennsylvania,
United States

Pennsylvania,
United States

Pennsylvania,
United States

Utah, United
States

Utah, United
States

Washington,
United States

6" May 2020

215 June 2020

25t April 2020

30" May 2020

20™ June 2020

3 May 2020

5% June 2020

1°* April 2020

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f

ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-

b46c-43c4a38bbe00

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f

ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-

b46c-43c4a38bbe00

US Centers for Disease Control “Commerical Laboratory
Seroprevalence Survey Data” https://covid.cdc.gov/covid-
data-tracker/#serology-surveillance

Havers et al. 2020 “Seroprevalence of Antibodies to SARS-
CoV-2 in 10 Sites in the United States, March 23 — May 12
2020” JAMA Intern Med.
https://jamanetwork.com/journals/jamainternalmedicine/f

ullarticle/2768834?guestAccessKey=7a5c32e6-3c27-41b3-

b46c-43c4a38bbe00

72



SI Table 10. Mortality rate estimation data sources

Location

China

Indonesia

Philippines

Japan

Republic of

Korea

Singapore

Australia

New Zealand

Belgium
Denmark

France

Germany

Greece

Iceland

Date

11 February 2020

17" August 2020

19" August 2020

8t" May 2020

18th August 2020

6t May 2020

18" August 2020

19t August 2020

19" August 2020
18 August 2020

19" August 2020

19t August 2020

19" August 2020

18™ June 2020

Source

“The Epidemiological Characteristics of an
Outbreak of 2019 Novel Coronavirus Diseases
(COVID-19) - China 2020”
http://weekly.chinacdc.cn/en/article/id/e53946e2
-c6c4-41e9-9a9b-fea8db1a8f51

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Philippines Department of Health

https://www.doh.gov.ph/2019-nCoV

Ministry of Health, Labour and Welfare

https://www.mhlw.go.jp/stf/houdou/houdou list
202005.html

KDCA

https://www.cdc.go.kr/board/board.es?mid=a304

02000000&bid=0030

Ministry of Health https://www.moh.gov.sg/news-

highlights

Department of Health

https://www.health.gov.au/news/health-

alerts/novel-coronavirus-2019-ncov-health-alert

Ministry of Health

https://www.health.govt.nz/our-work/diseases-

and-conditions/covid-19-novel-coronavirus/covid-
19-current-situation/covid-19-current-cases
Sciensano https://epistat.wiv-isp.be/covid/
Statens Serum Institut
https://www.ssi.dk/sygdomme-beredskab-og-
forskning/sygdomsovervaagning/c/covid19-
overvaagning

Sante Publique France
https://geodes.santepubliquefrance.fr/#c=indicat
or&f=0&i=covid hospit.dc&s=2020-03-
26&t=a01&view=map2

Robert Koch Institut
https://www.rki.de/DE/Content/InfAZ/N/Neuartig
es Coronavirus/Situationsberichte/Gesamt.html|
EODY Greece https://eody.gov.gr/neos-koronaios-
covid-19/

Directorate of Health https://www.covid.is/data
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Ireland

Italy

Netherlands

Norway

Portugal

Spain

Sweden

Switzerland

United
Kingdom

Argentina

Chile

Canada

19" August 2020

11t August 2020

19th August 2020

19t August 2020

11" August 2020

13t August 2020

19t August 2020

11" August 2020

7t August 2020

28™ July 2020

29t July 2020

19th August 2020

Health Protection Surveillance Centre
https://www.hpsc.ie/a-
z/respiratory/coronavirus/novelcoronavirus/casesi
nireland/epidemiologyofcovid-19inireland/
Istituto Superiore do Sanita
https://www.epicentro.iss.it/coronavirus/aggiorna

menti

RIVM https://www.rivm.nl/coronavirus-covid-
19/grafieken

NIPH https://www.fhi.no/en/id/infectious-
diseases/coronavirus/daily-reports/daily-reports-

COovVID19/

Direcao-Geral de Saude https://covid19.min-
saude.pt/

ISCII
https://www.isciii.es/QueHacemos/Servicios/Vigil
anciaSaludPublicaRENAVE/EnfermedadesTransmis
ibles/Paginas/InformesCOVID-19.aspx
Folkhalsomyndigheten
https://www.folkhalsomyndigheten.se/smittskydd
-beredskap/utbrott/aktuella-utbrott/covid-
19/statistik-och-analyser/bekraftade-fall-i-sverige/
Federal Office of Public Health
https://www.bag.admin.ch/bag/en/home/krankh
eiten/ausbrueche-epidemien-
pandemien/aktuelle-ausbrueche-
epidemien/novel-cov/situation-schweiz-und-

international.html

Office for National Statistics
https://www.ons.gov.uk/peoplepopulationandco
mmunity/birthsdeathsandmarriages/deaths/datas
ets/weeklyprovisionalfiguresondeathsregisteredin
englandandwales

Ministerio de Salud
https://www.argentina.gob.ar/salud/coronavirus-
COovID-19

MINSA https://www.minsal.cl/nuevo-coronavirus-
2019-ncov/casos-confirmados-en-chile-covid-19/
Government of Canada https://health-
infobase.canada.ca/covid-19/epidemiological-

summary-covid-19-cases.html
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United States

of America

Haiti

Ecuador

Peru

Colombia

Costa Rica

Guatemala
Mexico

Iraq

Lebanon

Afghanistan

Bangladesh

24™ June 2020

17" August 2020

3 May 2020

11t August 2020

14t August 2020

18" August 2020

18" August 2020
19" August 2020

19" August 2020

18th August 2020

18t August 2020

19t August 2020

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Ministere de la Sante Publique et de la Population
https://www.mspp.gouv.ht/documentation/
Ministerio de Salud Publica
https://www.salud.gob.ec/boletines-
epidemiologicos-coronavirus-por-semanas/
MINSA -
https://www.dge.gob.pe/portalnuevo/covid-
19/covid-cajas/situacion-del-covid-19-en-el-peru/
Instituto Nacional de Salud
https://www.ins.gov.co/Paginas/Boletines-casos-
COVID-19-Colombia.aspx#InplviewHash5872a312-
02d0-4090-aa8a-7716dd9fc4df=Paged%3DTRUE-
p_SortBehavior%3DO0-
p_FileLeafRef%3D2020%252d06%252d11%252exI
sx-p 1D%3D116-PageFirstRow%3D91
Observatorio Geografico en Salud
http://geovision.uned.ac.cr/oges/index.html#desc
argas

MSPAS https://tablerocovid.mspas.gob.gt/
Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

World Health Organization
https://app.powerbi.com/view?r=eyJrljoiNjliMDhi
YmItZTIhMSOOMDIhLTg3MjltMDNmMM2FhNzES5Nm
M4liwidCI6ImY2MTBiMGI3LWIKkMjQtNGIzOS04MT
BiLTNkYzI4AMGFmYjU5MClsiImMiQjh9

MOPH -
https://www.moph.gov.|b/ar/Pages/2/24870/%D9
%81%D9%8A%D8%B1%D9%88%D8%B3-
%D8%A7%D9%84%D8%AA%DE%A7%D8%AC%DI
%8A-
%D8%A7%D9%84%D9%85%D8%B3%D8%AA%D8%
AC%D8%AF-2019

Ministry of Public Health http://covid.moph-
dw.org/#

IEDCR https://covid19bd.idare.io/
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Republic of the
Congo

Kenya

Somalia

South Africa

Eswatini

Togo

Gauteng, South
Africa

Western Cape,
South Africa

Alabama,
United States
Alaska, United
States

Arizona, United
States
Arkansas,

United States

California,
United States

Colorado,
United States

28™ July 2020

27 July 2020

12t August 2020

1% July 2020

19" August 2020

19t August 2020
23" July 2020

19" August 2020

18t August 2020

18" August 2020

25™ August 2020

8™ August 2020

8™ August 2020

19" August 2020

Ministere de la Sante, de la Population, de la
Promotion de la Femme et de I'Integration de la
Femme au Developpement http://sante.gouv.cg/
Ministry of Health
https://www.health.go.ke/#1591180376422-
52af4cle-256b

WHO Somalia
https://bmgf.maps.arcgis.com/apps/opsdashboar
d/index.html#/d0d9a939c5fa401caa3a7447e72b2
017

Department of Health
https://sacoronavirus.co.za/

Wits University
https://datastudio.google.com/embed/u/0/report
ing/b847a713-0793-40ce-8196-
e37d1cc9d720/page/2a0LB

Gouvernement Togo
https://covid19.gouv.tg/graph-evolution/
Gauteng Health
https://twitter.com/gautenghealth?lang=en
Western Cape Government
https://coronavirus.westerncape.gov.za/covid-19-
dashboard

Alabama Public Health
https://alpublichealth.maps.arcgis.com/apps/opsd
ashboard/index.html#/6d2771faa9da4a2786a509
d82c8cf0Of7

Alaska Department of Health and Social Services
https://coronavirus-response-alaska-
dhss.hub.arcgis.com

Arizona Department of Health Services
https://www.azdhs.gov/preparedness/epidemiolo
gy-disease-control/infectious-disease-
epidemiology/covid-19/dashboards/index.php
National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Colorado Department of Health
https://drive.google.com/drive/folders/1bBAC7H-
pdEDgPxRuU_eR36ghzcOHWNf1
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Connecticut,
United States

Delaware,
United States

District of
Columbia,
United States
Florida, United
States

Georgia, United
States

Idaho, United
States

Illinois, United
States

Indiana, United
States

lowa, United
States

Kansas, United
States

Kentucky,
United States

Louisiana,
United States
Maine, United
States

Maryland,
United States

17" August 2020

24™ August 2020

8th August 2020

17" August 2020

25 August 2020

17th August 2020

25™ August 2020

17t August 2020

8™ August 2020

8t August 2020

24 July 2020

18" August 2020

8th August 2020

18" August 2020

Ct Data https://data.ct.gov/Health-and-Human-
Services/COVID-19-Cases-and-Deaths-by-Age-
Group/ypz6-8qyf

Delaware Environmental Public Health Tracking
Network
https://myhealthycommunity.dhss.delaware.gov/|
ocations/state

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Florida Division of Disaster Management
https://www.floridadisaster.org/covid19/covid-
19-data-reports/

Georgia Department of Public Health
https://dph.georgia.gov/covid-19-daily-status-
report

Idaho Department of Health and Welfare
https://public.tableau.com/profile/idaho.division.
of.public.health#!/vizhome/DPHIdahoCOVID-
19Dashboard/Home

Illinois Department of Public Health
http://www.dph.illinois.gov/covid19/covid19-
statistics

Indiana COVID-19 Data Report
https://www.coronavirus.in.gov/2393.htm
National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Kentucky Department of Public Health
https://kygeonet.maps.arcgis.com/apps/opsdashb
oard/index.html#/543ac64bc40445918cf8bc34dc4

0e334

Louisiana Department of Health
https://ldh.la.gov/Coronavirus/

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Maryland Department of Health
https://coronavirus.maryland.gov/
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Massachusetts,
United States

Michigan,
United States

Minnesota,
United States

Mississippi,
United States

Missouri,
United States

Nebraska,
United States

Nevada, United
States

New
Hampshire,
United States
New Jersey,
United States

New Mexico,
United States

New York,
United States

North Carolina,
United States
North Dakota,
United States

11th August 2020

17" August 2020

8™ August 2020

17" August 2020

25t August 2020

8t August 2020

8t August 2020

18" August 2020

30" July 2020

8t August 2020

17t August 2020

18t August 2020

8t August 2020

Government of Massachusetts
https://www.mass.gov/info-details/covid-19-
response-reporting

Michigan Department of Health and Human
Services
https://www.michigan.gov/coronavirus/0,9753,7-
406-98163 98173---,00.html

Department of Health
https://www.health.state.mn.us/diseases/corona
virus/stats/index.html

Mississippi State Department of Health
https://msdh.ms.gov/msdhsite/ static/14,0,420.h
tml

Missouri Department of Health
https://showmestrong.mo.gov/data/public-
health/

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

New Hampshire Department of Health and Human
Services https://www.nh.gov/covid19/

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

New York State Department of Health
https://covid19tracker.health.ny.gov/views/NYS-
COVID19-Tracker/NYSDOHCOVID-19Tracker-
Map?%3Aembed=yes&%3Atoolbar=no&%3Atabs=
n

North Carolina Department of Health and Human
Services https://covid19.ncdhhs.gov/dashboard
National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl

y/index.htm
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Ohio, United
States

Oklahoma,
United States
Oregon, United
States
Pennsylvania,
United States

Rhode Island,
United States

South Carolina,
United States

South Dakota,
United States

Tennessee,
United States

Texas, United
States

Utah, United
States

Vermont,
United States

Virginia, United
States
Washington,
United States

West Virginia,
United States

Wisconsin,
United States

24™ August 2020

17" August 2020
18" August 2020

8™ August 2020

8™ August 2020

18t August 2020

8t August 2020

18t August 2020

17t August 2020

8t August 2020

25™ August 2020

18" August 2020

18" August 2020

8™ August 2020

11t August 2020

Ohio Department of Health
https://coronavirus.ohio.gov/wps/portal/gov/covi
d-19/dashboards

Oklahoma State Department of Health
https://coronavirus.health.ok.gov/

Oregon Health Authority
https://govstatus.egov.com/OR-OHA-COVID-19
National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

South Carolina Department of Health and
Environmental Control
https://scdhec.gov/infectious-
diseases/viruses/coronavirus-disease-2019-covid-
19/south-carolina-county-level-data-covid-19
National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Department of Health
https://www.tn.gov/content/tn/health/cedep/nco
v/data.html

Deaprtmetn of State Health Services
https://www.dshs.texas.gov/coronavirus/
National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Health Vermont
https://www.healthvermont.gov/response/coron
avirus-covid-19/current-activity-vermont

Virginia Open Data Portal
https://data.virginia.gov/browse

Washington State Department of Health
https://www.doh.wa.gov/Emergencies/COVID19#
CovidDataTables

National Center for Health Statistics
https://www.cdc.gov/nchs/nvss/vsrr/covid weekl
y/index.htm

Wisconsin Department of Health Services
https://www.dhs.wisconsin.gov/outbreaks/index.
htm
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Aguascalientes,
Mexico

Baja California,
Mexico

Baja California
Sur, Mexico

Campeche,
Mexico

Coahuila,
Mexico

Colima, Mexico

Chiapas,
Mexico

Chihuahua,
Mexico

Mexico City,
Mexico

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-
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Durango,
Mexico

Guanajuato,
Mexico

Guerrero,
Mexico

Hidalgo,
Mexico

Jalisco, Mexico

Mexico, Mexico

Michoacan de
Ocampo,
Mexico

Morelos,
Mexico

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19t August 2020

19t August 2020

19t August 2020

19t August 2020

epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral
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Nayarit, Mexico

Nuevo Leon,
Mexico

Oaxaca, Mexico

Puebla, Mexico

Queretaro,
Mexico

Quintana Roo,
Mexico

San Luis Potosi,
Mexico

Sinaloa, Mexico

Sonora, Mexico

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-
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Tabasco,
Mexico

Tamaulipas,
Mexico

Tlaxcala,
Mexico

Veracruz de
Ignacio de al
Llave, Mexico

Yucatan,
Mexico

Zacatecas,
Mexico

North Sumatra,

Indonesia

South Sumatra,

Indonesia

Jakarta,
Indonesia

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

19" August 2020

17" August 2020

17t August 2020

17t August 2020

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-

enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie

nto-estandarizado-para-la-vigilancia-

epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Gobierno de Mexico
https://www.gob.mx/salud/documentos/lineamie
nto-estandarizado-para-la-vigilancia-
epidemiologica-y-por-laboratorio-de-la-
enfermedad-respiratoria-viral

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran
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West Java,
Indonesia

Central Java,
Indonesia

East Java,
Indonesia

Banten,
Indonesia

West Nusa
Tenggara,
Indonesia
Central
Kalimantan,
Indonesia
South
Kalimantan,
Indonesia
East
Kalimantan,
Indonesia
North Sulawesi,
Indonesia

South Sulawesi,
Indonesia

North Maluku,
Indonesia

Alagoas, Brazil
Amazonas,
Brazil

Amapa, Brazil

Ceara, Brazil

Paraiba, Brazil

17" August 2020

17" August 2020

17t August 2020

17t August 2020

17" August 2020

17" August 2020

17t August 2020

17t August 2020

17t August 2020

17" August 2020

17" August 2020

26" July 2020

8 July 2020

5% August 2020
13" August 2020

19" August 2020

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-

sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-

sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-

sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran
Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran
Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran
Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Komite Penanganan COVID-19 Dan Pemulihan
Ekonomi Nasional https://covid19.go.id/peta-
sebaran

Government of State of Alagoas

http://www.alagoascontraocoronavirus.al.gov.br/

FVS Amazonas
http://www.fvs.am.gov.br/publicacoes
Governo do Estado
http://painel.corona.ap.gov.br/
Department of Health
https://coronavirus.ceara.gov.br/boletins/
Department of Health

https://superset.plataformatarget.com.br/superse
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Parana, Brazil
Pernambuco,
Brazil

Santa Catarina,
Brazil

Sergipe, Brazil

Delhi, India

Jharkhand,

India

Karnataka,
India

Tamil Nadu,
India

La Rioja, Spain

12th August 2020
26 July 2020

26" July 2020

19" August 2020

20* May 2020

8™ June 2020

5t August 2020

27t July 2020

17" August 2020

t/explore json/?form data=%7B%22slice id%22%
3A1549%7D&csv=true

Governo do Estado https://www.saude.pr.gov.br/
Open Data
https://dados.seplag.pe.gov.br/apps/corona dado
s.html

Government of Santa Catarina
http://www.coronavirus.sc.gov.br/category/boleti
ns/

Ministry of Health
https://todoscontraocorona.net.br/

Government of Delhi
http://health.delhigovt.nic.in/wps/wcm/connect/
doit health/Health/Home/Covid19/

DD News Jharkhand
https://twitter.com/rnuddkranchi/status/1314231
773610430464

Department of Health and Family Welfare
https://drive.google.com/file/d/1jfRIOMdvPRBI5w
gZh1LEIMvaofNAxJGY/view

Health and Family Welfare Department
https://twitter.com/ANI/status/13141831025335
70560

Gobierno de La Rioja
https://actualidad.larioja.org/coronavirus/datos
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Sl Table 11. f regression coefficient constraints

Covariate

Pneumonia Seasonality
Mobility

Mask Use

Testing

Air Quality

Smoking Prevalence
LRI Mortality

Altitude

Population Density

Time-varying
Yes
Yes
Yes
Yes
No
No
No
No

No

86

Lower Bound

0.9

Upper Bound

1.31
00
0
0
00
1
00
00
00



SI Table 12 Cumulative deaths 21 September 2020 through 28 February 2021, maximum estimated daily deaths per million population, date of maximum daily

deaths, and estimated Reffective ON 28 February 2021 for two additional derivative scenarios.

Location

United States
of America

California

Florida

New York

Pennsylvania

Texas

lllinois

New Jersey

Massachusetts

less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million)

Cumulative deaths through
28 February 2021

415559 (377160-451197)

53900 (42694-68160)

28981 (23397-31802)

41540 (35559-48724)

19430 (16909-22990)

35414 (27254-40056)

16544 (13376-18728)

22833 (19359-25729)

13782 (11657-14873)

Maximum
estimated daily
deaths per million

6.3 (4.7-7.6)

10.9 (6-15.1)

6.2 (0.8-10.9)

5.6 (1.9-13.1)

8.8 (3.6-15.4)

7.3 (2.8-12.4)

6.7 (3.1-11.1)

9.2 (2.2-17.6)

8.8 (3.3-15.7)

Date of maximum
daily deaths

1/26/21

1/19/21

12/19/20

2/18/21

12/31/20

1/28/21

2/8/21

1/12/21

2/2/21

Estimated Reffective
on 28 February
2021

NA

0.86 (0.81-0.91)

0.87 (0.66-1.07)

0.86 (0.63-1.16)

0.9 (0.76-1.07)

0.72 (0.6-1.02)

0.76 (0.61-1.03)

0.82 (0.66-1)

0.74 (0.64-0.94)

87

"Masks only" (95% of population wears masks, SDM are removed and
not reinstated)

Cumulative deaths
through 28
February 2021

490437
(379492-
665753)

65335 (38380-
122247)

42096 (26825-
65821)

41748 (34836-
71491)

37589 (17752-
78473)

35234 (24421-
53967)

15364 (12085-
22725)

29090 (18368-
45890)

14295 (10886-
22980)

Maximum
estimated daily
deaths per million

14.9 (8.3-27)

27.3 (11.1-61.8)

16.8 (7.6-33.1)

10.2 (1.5-42.9)

40 (13-86.8)

10.9 (4-22.4)

8.4 (3.2-22.3)

25.5 (4.6-57.8)

20.6 (4.6-69.9)

Date of maximum
daily deaths

2/28/21

2/28/21

2/26/21

2/28/21

2/21/21

2/28/21

2/28/21

2/17/21

2/28/21

Estimated Reffective
on 28 February
2021

NA

0.95 (0.82-1.1)

0.91 (0.83-1.02)

1.04 (0.85-1.21)

0.86 (0.65-1.02)

0.95 (0.84-1.09)

0.98 (0.9-1.09)

0.84 (0.6-1.09)

1.07 (0.95-1.25)



Location

Michigan
North Carolina
Ohio
Georgia
Missouri
Indiana
Connecticut
Arizona
Colorado
Maryland
Minnesota

Virginia

less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million)

Cumulative deaths through
28 February 2021

12192 (9380-14492)

12557 (9901-14941)

10500 (7225-13383)

14505 (11001-17038)

6493 (4601-8350)
7044 (5236-8395)
6598 (5081-8190)
10769 (8350-12204)
5761 (3794-7460)
7906 (6588-9003)
5079 (3499-6098)

10904 (7491-17325)

Maximum
estimated daily

deaths per million

5.7 (1.5-11.9)
9.3 (4.6-14)
6.7 (2.6-11.1)
6 (2.8-10.9)
7.9 (2.4-16.6)
6.3 (2.7-11.2)
8.1(1.9-16)
6.9 (2.8-14)
8.8 (2.9-16.4)
8.5 (4.7-13.9)
6.5 (2.1-12)

7.7 (2.2-18.1)

Date of maximum
daily deaths

2/11/21
1/17/21
2/21/21
10/25/20
10/27/20
2/12/21
2/3/21
10/26/20
1/26/21
1/30/21
2/6/21

10/30/20

Estimated Reffective
on 28 February
2021

0.82 (0.59-1.1)

0.84 (0.75-0.96)

0.84 (0.66-1.06)

0.82 (0.64-1.02)

0.92 (0.67-1.14)
0.8 (0.6-1.05)
0.82 (0.65-1.12)
0.85 (0.63-1.17)
0.79 (0.66-1)
0.75 (0.64-0.93)
0.74 (0.56-1.02)

0.91 (0.73-1.1)

88

"Masks only" (95% of population wears masks, SDM are removed and
not reinstated)

Cumulative deaths
through 28
February 2021
11974 (8798-
22436)

15217 (8140-
28550)

9071 (6834-
12840)

14994 (10683-
22756)

13391 (5947-
27818)
6353 (4823-
9505)
7666 (4869-
19376)
12677 (9092-
18126)
8013 (3357-
19496)
8410 (5895-
15574)
4848 (3166-
8773)
21863 (8446-
46746)

Maximum
estimated daily
deaths per million

9.4 (2.1-34.7)
21.1(8-43.8)
6 (2-15)
8.3 (2.5-19)
22.7 (7.3-48.2)
6.9 (2.2-17.9)
26.6 (2.4-108.5)
11.6 (5-21.9)
25.7 (5.8-67.4)
16.2 (5.5-44.4)
9.1(2.5-27.3)

28.7 (7.9-64.5)

Date of maximum
daily deaths

2/28/21
2/28/21
2/28/21
2/28/21
2/15/21
2/28/21
2/28/21
2/24/21
2/28/21
2/28/21
2/28/21

2/17/21

Estimated Reffective
on 28 February
2021

1.02 (0.91-1.16)

0.93 (0.8-1.08)

0.99 (0.91-1.11)

0.94 (0.83-1.04)

0.87 (0.69-1.01)
0.98 (0.9-1.09)
1.05 (0.77-1.26)
0.88 (0.73-1.02)
0.92 (0.68-1.11)
0.96 (0.83-1.08)
0.97 (0.89-1.08)

0.87 (0.66-1.02)



Location

Alabama

South Carolina

Tennessee
Louisiana

Nevada

Kansas

New Mexico

Wisconsin
Arkansas
Oklahoma

Washington

Kentucky

Mississippi

less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million)

Cumulative deaths through
28 February 2021

6049 (4240-7305)

6580 (4906-8074)

6060 (3190-8053)
7997 (6447-9537)

3825 (2650-4632)
2443 (960-3654)

2689 (2224-3270)

2953 (1817-4880)
3215 (2162-4138)
3649 (2538-4356)
4340 (3080-5902)
2804 (1577-4225)

5019 (4120-5915)

Maximum
estimated daily
deaths per million

6.3 (0.9-10.7)
5.7 (0.8-9.9)
5.9 (1-11.1)

6.3 (1.9-10.5)

7.8 (2.9-13.5)
7.3 (0.7-14.4)

9.8 (4.9-14.6)

4.6 (1.2-10.8)
6.7 (2-13.2)
6.3 (1.4-11.4)
4.6 (1.8-7.6)
5.1(0.8-11)

8.1(3.5-17.7)

Date of maximum
daily deaths

1/27/21

2/17/21

2/8/21

2/19/21
2/6/21
1/18/21
1/20/21
2/28/21
10/25/20
1/18/21
2/17/21
2/20/21

10/21/20

Estimated Reffective
on 28 February
2021

0.83 (0.69-1)
0.85 (0.64-1.04)
0.83 (0.67-1.05)

0.84 (0.67-1.06)

0.78 (0.66-1.08)
0.85 (0.68-1.05)

0.83 (0.74-0.96)

0.93 (0.62-1.11)
0.88 (0.64-1.07)

0.77 (0.59-0.99)
0.96 (0.89-1.06)
0.87 (0.62-1.08)

0.89 (0.67-1.02)

89

"Masks only" (95% of population wears masks, SDM are removed and
not reinstated)

Cumulative deaths
through 28
February 2021
6053 (3757-
11137)

6075 (4644-
8213)

5519 (3028-
9374)
7460 (6276-
9338)
3843 (2397-
7095)
3222 (904-8955)

3489 (1923-
7809)

2484 (1769-
3938)
4073 (2017-
7847)
3949 (2186-
8115)

4081 (2809-
7034)

2396 (1507-
4106)
5503 (4109-
8215)

Maximum
estimated daily
deaths per million

7.9 (2.1-19.1)

5.5(1.6-12.1)

6.7 (0.8-17.7)
5.6 (1.4-12.9)

13.3 (3.7-35)
18.1 (0.8-61.3)

27.1(9.3-71.2)

3.3(0.9-10)

10 (1.8-25.5)
9.7 (3.1-24.5)
6 (1.3-18.7)
4.6 (0.7-14.4)

8.2 (3.5-17.5)

Date of maximum
daily deaths

2/26/21

2/28/21

2/28/21

2/28/21
2/28/21
2/28/21
2/28/21
2/28/21
2/28/21
2/28/21
2/28/21
2/28/21

10/22/20

Estimated Reffective
on 28 February
2021

0.91 (0.81-1.01)

0.95 (0.88-1.05)

0.95 (0.86-1.06)
0.96 (0.87-1.07)

1(0.88-1.15)
0.94 (0.79-1.1)

0.95 (0.79-1.1)

0.99 (0.91-1.13)
0.94 (0.87-1.04)
0.91 (0.8-1.02)
0.95 (0.9-1.04)
0.97 (0.89-1.1)

0.91 (0.83-1)



Location

Rhode Island
Nebraska

West Virginia

lowa

Idaho

North Dakota

Delaware

Montana
Hawaii

South Dakota

District of
Columbia

Oregon
Utah
Alaska

New
Hampshire

less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million)

Maximum
estimated daily
deaths per million

Cumulative deaths through
28 February 2021

1976 (1890-2085) 8.6 (4.1-13.7)
1529 (822-1986) 6.7 (1.7-12.6)
1537 (727-2099) 6.8 (1.6-11.8)
2142 (1522-3661) 2.8 (1.3-5.3)
1289 (634-2029) 5.5 (0.8-11.6)

724 (508-1122) 14.4 (5.2-30.4)

1302 (1118-1409) 7.7 (3.6-13.2)
543 (267-1082) 4.2 (1.7-9.7)
576 (269-1121) 4.5 (0.8-10.6)
487 (300-848) 3.2 (2.2-4.4)
791 (685-1007) 5.7 (1.6-12.9)
701 (609-923) 0.7 (0.7-0.7)
549 (476-827) 0.5 (0-2.9)
293 (68-815) 2.5(0.1-13.3)
452 (441-480) 0.2 (0.2-0.2)

Date of maximum
daily deaths

12/26/20
1/28/21

2/6/21

10/6/20
2/16/21

10/20/20

1/9/21

10/6/20
2/28/21

10/1/20

2/28/21

9/22/20
2/28/21
11/30/20

9/22/20

Estimated Reffective
on 28 February
2021

0.92 (0.76-1.1)
0.78 (0.63-1.01)

0.86 (0.72-1.07)

0.94 (0.67-1.04)
0.85 (0.65-1.08)

0.95 (0.7-1.09)

0.78 (0.65-0.94)

0.95 (0.7-1.06)
0.95 (0.72-1.13)

0.92 (0.6-1.08)

0.98 (0.69-1.21)

1.03 (0.96-1.15)
1.02 (0.95-1.15)
0.82 (0.6-0.96)

1 (0.94-1.09)

90

"Masks only" (95% of population wears masks, SDM are removed and

Cumulative deaths
through 28
February 2021

3368 (2064-
5864)

1520 (736-3416)
1536 (654-3466)

1964 (1502-
3106)
1224 (609-2787)

1546 (696-3004)

1474 (1001-
2404)
510 (256-1175)

465 (253-923)

422 (292-753)

731 (666-857)

666 (604-800)
520 (474-663)
371 (67-1872)

448 (441-463)

not reinstated)

Maximum

. . Date of maximum
estimated daily

deaths per million daily deaths
43.2 (19.8-79.1) 2/27/21
10.4 (1.6-35.6) 2/28/21
11.3 (1.7-36.5) 2/28/21
2.8 (1.3-5.1) 10/6/20
7.7 (0.7-27.7) 2/28/21
15.4 (5.2-33.5) 10/24/20
13 (5.5-25.1) 2/25/21
4.1(1.7-9.1) 10/6/20
3.3(0.6-11.3) 2/28/21
3.2 (2.2-4.4) 10/1/20
3.4 (0.8-10) 2/28/21
0.7 (0.7-0.7) 9/22/20
0.4 (0.4-0.4) 9/28/20
3.8(0.1-23.8) 1/21/21
0.2 (0.2-0.2) 9/22/20

Estimated Reffective
on 28 February
2021

0.87 (0.67-1.04)
0.94 (0.87-1.05)

1(0.91-1.13)

0.95 (0.9-1.04)
0.98 (0.88-1.12)

0.87 (0.77-0.96)

0.9 (0.75-1.02)

0.96 (0.9-1.05)
0.99 (0.88-1.15)

0.97 (0.91-1.09)

1.08 (0.96-1.25)

1.02 (0.95-1.12)
1.01 (0.94-1.13)
0.81 (0.64-0.95)

0.98 (0.92-1.07)



Location

Maine
Vermont
Wyoming

less comprehensive mask use (85% of population wears masks and SDM re-
imposed at daily death rate threshold of 8/million)

Cumulative deaths through
28 February 2021

170 (146-237)
72 (63-102)
70 (53-129)

Maximum
estimated daily
deaths per million

0.3 (0.3-0.3)
0.6 (0.1-3.2)
0.7 (0.7-0.7)

Date of maximum
daily deaths

9/22/20
2/28/21
9/22/20

Estimated Reffective
on 28 February
2021

1.01 (0.93-1.12)
1.02 (0.79-1.36)
0.93 (0.73-1.04)

91

"Masks only" (95% of population wears masks, SDM are removed and
not reinstated)

Cumulative deaths Maximum Date of maximum Estimated Reffective
through 28 estimated daily dailv death on 28 February
February 2021 deaths per million afly deaths 2021
162 (145-205) 0.3 (0.3-0.3) 9/22/20 0.99 (0.9-1.1)
69 (63-89) 0.4 (0.1-1.9) 2/28/21 0.99 (0.76-1.34)
65 (53-102) 0.7 (0.7-0.7) 9/22/20 0.92 (0.7-1.04)



