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Theoretical Study of Aerosol Filtration

by Fibrous Filters*

K. W. Leetand B. Y. H. Liu

Particle Technology Laboratory, Mechanical Engineering Department, University of Minnesota,

Minneapolis, MN 55455

A theoretical analysis of filtration mechanisms has been
made for fibrous filters in the region of maximum
penetration. The theory is based on a boundary layer
approach using the Kuwabara flow field to account for
the interference effects of neighboring fibers. An im-

proved expression for the diffusion and interception
filtration efficiencies has been derived that compares
well with the existing theories. A comparison of the
developed theory with experimental data also confirms
the validity of the present work.

NOMENCLATURE

A constant

b outer cell radius in the cell model (cm or
pm)

D diffusion coefficient (cm? /sec)

D, fiber diameter (cm)

D, particle diameter (cm or ym)

K hydrodynamic factor of Kuwabara flow
=—1lnoa—2+a—jo?

K, hydrodynamic factor of Spielman and
Goren flow (see Table 1)

K, hydrodynamic factor of Lamb’s flow
=200— In Re

ko, k, modified Bessel function

M dimensionless rate of diffusion to the
fiber surface

M, maximum value of M’

n particle concentration (number /cm?)

", particle concentration at a distance far

from the fiber (number/cm?)

* This paper is based on the thesis of K. W. Lee in partial
fulfillment of the requirements for the Ph.D. degree at the University
of Minnesota.
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Laboratories, Columbus, OH 43201.
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w dimensionless particle concentration
=njng '

Pe Peclet number
=uD/D

R interception parameter, diameter ratio

of particle to fiber, or dimensionless
particle radius

:Rp/ R;

Re Reynolds number
,Ep D/

R;  fiber radius (cm or um)

R, particle radius (cm or pm)

r position coordinate in the radial
direction

¥ dimensionless radial coordinate

U, face velocity, undisturbed air velocity
(cm/sec)

u flow velocity toward fiber on the
boundary and at =0 in the cell model
(cm/sec)

u, radial component flow velocity (cm /sec)

Ug circumferential component flow veloc-
ity. (cm /sec)

u, dimensionless radial component flow
velocity
=u,/u
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Uyt dimensionless  circumferential com-
ponent flow velocity
=u,/u

Y thickness of streamline in which all the
particles are filtered by fiber (cm or pm)

o volume fraction, solidity, or packing
density of filter

B, coeflicient of diffusional filtration ef-
ficiency {see Eq. (35)]

b, coefficient of interceptional filtration
efficiency

I'(¢) gamma function of ¢

n single fiber efficiency

Hp single fiber efficiency due to diffusion
Nr single fiber efficiency due to interception
INTRODUCTION

There have been extensive theoretical investiga-
tions of filtration mechanisms since the times of
Langmuir (1942). One of the difficulties that
remained in the filtration theories until 1963
concerned the treatment of the neighboring fiber
interference effect. A second theoretical difficulty
has been related to the treatment of the nonideal
effects in fiber orientation. The random orien-
tation of fibers and the inhomogeneity of the
fibers cause the flow for real filters to deviate
from the ideal flow patterns assumed
theoretically.

The neighboring fiber interference effect was
adequately taken into account first by Fuchs
and Stechkina (1963) using the Kuwabara-
Happel flow field (Happel, 1959; Kuwabara,
1959). The Kuwabara—Happel flow field is based
on the solution of the Navier-Stokes equation
for the case of viscous flow around a cylinder by
the use of the so-called cell model. As was shown
by Kirsh and Fuchs (1967) and by Yeh (1972),
the Kuwabara flow field provides a better
representation of the flow around filter fibers
than the Happel flow field and has therefore
been used more widely in filtration analyses
(Fuchs and Stechkina, 1963; Davies, 1965; Pich,
1965; Stechkina and Fuchs, 1966; Stechkina et

K. W.leeand B. Y. H. Liu -

0 position coordinate in the circumferen-
tial direction

A function of « (sec Table 1)

U air viscosity (poise)

P boundary layer radius (cm or um)

Pa air density (g/cm?)

I dimensionless boundary layer radius
=p/R;

1/ stream function

v, stream function passing through the
outer diffusion boundary layer

Y’ dimensionless stream function
=y /uR;

AY' error involved in approximation for

dimensionless stream function

al, 1969; Yeh and Liu, 1974a). In the region of
maximum penetrating particle size, the pre-
dominant filtration mechanisms are diffusion
and interception (Stechkina et al, 1970).
Consequently, only these mechanisms will be
considered here, although in a somewhat dif-
ferent analytical manner than that used by
Fuchs and Stechkina.

The approach taken here is a boundary layer
approach similar to that commonly used in heat
and mass transfer analysis and similar to that
used by Friedlander (1957, 1958) and by
Natanson (1957). In the earlier analyses by
Friedlander and by Natanson, the flow fields of
Tomotika and Aoi (1950) and Lamb (1932),
respectively, were used. In the present case the
Kuwabara flow field is used, which is believed to
provide a better representation of the actual flow
field in a filter than either the Tomotika—Aoi or
Lamb flow fields.

DIFFUSION

Consider first the case of convective diffusion of
particles of vanishingly small size, i.e., for the
case of zero interception parameter, R=R /R,
where R and R;are the radii of the particle and
filter fibers, respectively. In polar coordinates »
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and 6 the equation of convective diffusion can be
written as follows:

on u, on D *n N 1 on . &%n
U — 4+ - — = - e "
" or r 06 or? - Or 20 ’

where n is the particle concentraton, D is the
diffusion coefficient, and u, and u, are the radial
and circumferential component flow velocities,
respectively. The appropriate boundary con-
ditions are

n=0 at r=Rj

0

M0, n=n, at r=p(0), 2
cr

where n, 1s particle concentraton at the outer
edge of boundary layer and p is the radius of the
boundary layer. The velocity components u, and
u, are given by suitable flow fields. Equation (1)
is an elliptic partial differential equation that
cannot be solved analytically.

In the case of the boundary layer analysis
used here, the diffusion boundary layer is thin,
and the term (D /#?)¢%n /30*) on the right-hand
side of Eq. (1) is much smaller than the other
terms and may be neglected to give

P 2 A )
, O wn D2 (o 3
" or r o0 r or or

This is equivalent to neglecting the circum-
ferential diffusion of the particles and consider-
ing only the diffusion in the radial direction. This
is.a reasonable assumption, since the concentra-
tion gradient of particles in the circumferential
direction is expected to be small. In order to
obtain an exact analytical solution, Natanson
(1957) further dropped the term (D /r}én/cr) on
the right-hand side of Eq. (1). In this study, this
term is retained.

By definition of the stream function y the
velocity components appearing in Eq. (3) can be
written

1 oy
- v 4
U= 0 @

To simplify Eq. (3) further the coordinate system
(r, B) will be changed into the system [y«(r, 0), 0].

o))
S

and U= —

j
=5

149
Utilizing the chain rule for coordinate
transformation,
on on Gy on
| = A7 A TUg o
orly Oy or b oy
on on ¢ on
c0),~ ay a0 ao
o0l, oy o 01,
on N on
=ru, —- + —| . ,
"oy o0}, ()
Equation (3) can be reduced to
cn ¢ on
- =D r—1. 6
a0, Q] ( 6r> (©)

The equation has now been simplified by the
change of coordinates and can be readily in-
tegrated from the fiber surface to the outer edge
of the concentration boundary layer,

j""mm on ) 0
o Lo} =R

where W, is the stream function passing
through the outer diffusion boundary layer at 6.
In obtaining Eq. (7), we have assumed ¢n/dr =0
at r=p. Since

a

n
dyy=DR; <
v 01

b

)

d (Vo
- n(y, 6) d
ML W, 0) di
Y o(0) (7?1 6{//
= —d £ 8
|7 G awene ®)
Equation (7) can be written
d (Yoo dl//,,(g)
DR, (“‘) | )
8}" r= Ry

On the left-hand side of Eq. (9) are the terms
representing the rate of convection of particles
into the boundary layer, and on the right-hand
side is the term representing the rate of diffusion
of particles to the cylinder surface. Across the
top of the diffusion boundary layer there is no
diffusion since the concentration gradient is zero
there. Equation (9) can also be obtained directly
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by constructing a control volume with the width
and height r df and p—R, respectively. By
applying Eq. (9) to the rule of integration by
parts, we have

d [" on
— dn=—DR,|—- . 1
d0 J; v dn ‘<ar>,_Rf (10)
Using the dimensionless quantitites

P v
p= R,’ V= uR;’

! n ! r

= —, r=-—-—,
" ng R;

where u is the average air velocity inside the
filter, Eqg. (10) can be rewritten

d (! D [on

— Tdn' = — — | —.

do L v’ dn uR; <8r’>,.r:1 ’ ()
which in turn becomes

dM'’ _ 2 [on T
do Pel\or )., (12)

where M'(Y', () is the dimensionless rate of
particle diffusion to the fiber surface from 6 =0
to 0 =0, and Pe=u(2R)/D is the Peclet number.
Thus, M’ is zero at § =0 and reaches a maximum
at 0 =n. In terms of the dimensionless quantities,
the boundary conditions in Eq. (2) become

’

n=0 at =1,

r=p'(0).

(13)
=0 at

Further, from Eq. (3) and from the definition of
the boundary layer, we obtain the additional
conditions,

0 on’ '
,
r—1=0
or’ or’

at =1 and

r=p. (14)

It is a usual practice in boundary layer
analysis to seek a dimensionless particle concen-
tration #'(r', (/) that satisfies as many boundary
conditions as may be needed. The following
simple expression is used by Friedlander (1957).

_ Inr
" In p(6)

. (15)

K. W.Leeand B. Y. H. Liu

The stream function of the Kuwabara flow has
been approximated for the present study as
follows:

B e O
W= K (r"—1)* sin 6, (16)
where o is the solidity, packing density, or
volume fraction of filter. The detailed informa-
tion concerning this approximation, including
the accuracy that can be obtained, is described
in the Appendix.

Substituting Egs. (15) and (16) into Eq. (12),
M’ can be written
M- 1 fﬂl 1—o (' =1)°

1

; sin 6 dr'

K 2

I 1—-af, R R
"Iy K <I -2In¥— ;/)1 sin 0,
a7
where K is the Kuwabara hydrodynamic factor
as defined by Eq. (A.1). The logarithms appear-
ing in Eq. (17) can be further approximated by
the following series expansion:

-1 2 -1 3
In x=(x-1)— & 3 ) & 3 r E
X>3 (18)
Substituting Eq. (18) into Eq. (17),
,l=a(p=1)7
M = K 3,7 sin 0,
or
e B SV 19
p |(1—o)sin 0 ' (19)

With this relation, Eq. (12) can now be in-
tegrated once more:

p—1\dM’ -2
£ = _ 2
< 0 > do Pe ’ (20
or
/ o

<iK>1 : [M M2 ame
l—uo 0

" 2 5

= — FéSln 6 do, (21)
0

where the limits of the integration have been
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given as M when 6= and 0 when §=0. The
total number of particles diffused to the surface
is obtained as

Mo 3/1—a\¥2 2
* 12\ 3K Pe

1—o\!73 ‘
=26{——] Pe 3
< K > e '

where 1(c) is the gamma function of an arbitrary
constant ¢. By definition of the single fiber
efliciency due to diffusion 4, and by Eq. (12), we
have

" (0n
np=DR; = df /uRn,
o \Cr/,_g,

2 [t 40
~ Pe |, \or =1

1— 1/3
=M, =26 <~7<°‘> Pe~ 23,

The result shows that for pure diffusion, the
single fiber efficiency is proportional to
{1 —w)/K]"? P27

In Table 1 the theoretical results obtained by
various investigators on the diffusive collection
of particles by fibrous filters are listed. It can be

~ T (i)}“
T 5
I

(22)

(23)
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seen that all predict that 5 ,oc Pe =%, It should
be noted that for diffusion in ideal frictionless
flow, nyocPe™ 12 '

Concerning the dependence of #, on filter
solidity, we note that because the flow fields used
by Friedlander (1957), Natanson (1957), and
Stechkina (1966) are those of Lamb or
Tomotika and Aoi, their results do not contain
provisions for varying filter solidity. Later
Stechkina and Fuchs (1966) obtained their
expression (listed in Table 1) by neglecting ail the
terms in Eq. (A.1) that included the solidity o.
Under most circumstances this seems to be a
reasonable simplification, since o is usually quite
small. However, when the solidity is increased or
when the diffusion layer thickness becomes
large, namely, when Pe becomes very small, the
terms are not completely negligible. By ap-
proximating -these terms as described in the
Appendix and through a somewhat different
approach, we have obtained an expression that
can account for the effect of filter solidity to a
first approximation. It is believed that with the
inclusion of the factor 1 —« in the theoretical
expresson, the results can be applied over a
wider range of conditions than the expressions
without the factor. Further discussion and com-
parison of the theoretical expression with the
experiment will be made later,

TABLE 1. List of Theoretical Diffusional Filtration Efficiencies for Fiber Normal

to Flow Direction

Investigators Theoretical prediction Flow field used Remarks

Langmuir (1942) 1.70 Kg—1/3Pe—=2/3 Lamb’s flow Kg=2—InRe

Natanson (1957) 2.9 Ky—1/3 Pe—2/3 Lamb’s flow Kg=2—-InRe

Friedlander (1957) 3.2541/3Pe—2/3 Tomotika and Aoi A is a constant depending on Re
and a

Stechkina (1966) 29Kg—1/3Pe—2/3+0.62Pe—1 Lamb’s flow Kg=2—InRe

Stczcl};l;ig)a andFuchs 2.9K—1/3Pe—2/3+0.62Pe~1 Kuwabara flow K=-1lina-075+0a - 1s2

Spielmanand Goren 2.9 K —1/3Pe—2/3

(1968)

present study

Brinkman flow

Kuwabara flow

K =ko(M\)/Ak{(\), where
A =4a(A/2+ 1/K) and
ko, k1 are modified
Bessel functions

=_1 _ ~ 1,2
K 21na 0.75 t« o
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INTERCEPTION

Direct interception takes place on account of the
finite size of the particles. The single fiber
efficiency due to interception # is defined

ng=Y/R;=uY/uR,, (24)

where Y is the distance between the center line
and the streamline below which all the particles
are collected. Since an approaching streamline
at a distance Y from the stagnation streamline
must later pass through a point at a distance R
from the fiber surface at 6 =7/2 in order for the
particle to be collected, we have

B l//Rf+ Rp.n/2

Nr= — ;Ri- :¢{+R,n/27 (25)

where |, 4./, is the dimensionless stream
function passing through a point at a distance of
R, from the fiber surface at an angle =/2.
Substituting the stream function expression for
the Kuwabara flow in Eq. (A.1), we have

1+R
- | 14+
N r YK [2 n(1+R)—1+«
1\ o o
— 1—- =) —-=(1 2.
+ <1+R> ( 2> 2( +R)}

(26)
Although Eq. (26) is a complete expression for
the interception efficiency based on Kuwabara
flow field, the form of the equation is somewhat
long, and it would be useful to reduce it to a
simpler form. Since we have already obtained an
approximation form of the stream function as
given in the Appendix, we simply substitute Eq.
(A9)nto Eq. (25) with 1 + R for /" and =/2 for ¢

R 27)

[t may be seen that the filter efficiency expression
can thus be greatly simplified. As discussed in
the Appendix, the primary limitation of the
approximation. is that r/R;~1, and this limi-
tation corresponds to 1+R~1, or that R is
small. Again, the condition of solidity being
small is not too restrictive, as is discussed in the
Appendix.

K. W.Leeand B. Y. H. Liu

In the following discussion we compare the
present approximation with the approximations
obtained by other investigators. Stechkina and
Fuchs (1966) approximated Eq. (26) by omitting
all the terms containing « and obtained the
equation '

1+R 1
Ng= 7 ’:2 In(1+R)—1+ (1W:l . (28)

The limitation of their approximation is that
both the solidity « and R must be small
Natanson (1957, 1962) approximated the inter-
ception efficiency:

ne=(1/KoR?, (29)

where K, was originally obtained from Lamb’s
flow, although it can be replaced by K in the case
of Kuwabara flow field.

It is of interest to note that if R becomes
extremely small, the present approximation, Eq.
(27), reduces to

1—a

= ——R? f
Nr X or
This can also be derived if Eq. (A.9) is further
approximated as

R—0. (30)

1—
Y —1)sinG, ol

W' =

However, the magnitude of the error involved in
this approximation becomes in general larger
than that given by Eq. (A.11). If « is extremely
small, Eq. (27) reduces to

1" R?
K 1+R
In case both R and « are small, Eq. (27) reduces
to the result of Natanson (1962), given by Eq.
(29). Thus, it is apparent that Eq. (27) would be
less restrictive with regard to both R and o.

Table 2 is a comparison of values for the
interception efficiency for a few selected cases as
calculated with the preceding equations. It can
be seen that when both R and o are small, all five
approximations give efficiency values that are
close to the value computed with the full
Kuwabara form, Eq. (26). However, when «

Nr for o—0. (31
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TABLE 2. Comparison of the Interception Efficiencies Computed with
Different Approximations

Efficiency Stechkina

Diameter Hydrodynamic using the Present Study and Fuchs Natanson

Solidity ratio factor original flow, (1966), (1962),

” R K Eq.(26) Eq.(27) Eq.(30) Eq.(31) Eq.(23) Eq.(29)
0.001 0.05 2.7049 0.00089 0.00088 0.00092 0.00088 0.00089 0.00092
0.001 0.1 2.7049 0.00347 0.00336 0.00370 0.00336 0.00347 0.00370
0.005 0.05 1.9042 0.00126 0.00124  0.00131 0.00125 0.00127 0.00131
0.01 0.1 1.5626 0.00594 0.00576  0.00634  0.00582 0.00601 0.00640
0.1 0.1 0.4988 0.0168 0.0164 0.0180 0.0182 0.0188 0.0200
0.1 0.2 0.4988 0.0630 0.0602 0.0733 0.0668 0.0711 0.0802
0.2 0.2 0.2447 0.112 0.109 0.1308 0.1360 0.145 0.163
0.3333 0.01 0.1049 0.00063 0.00063 0.00064  0.00094 0.00095 0.00095
0.3333 0.1 0.1049 0.0577 0.0578 0.0636 0.0867 0.0895 0.0954
0.5 0.01 0.0341 0.00145 0.00145 0.00146  0.00290 0.00291 0.00293
0.5 0.1 0.0341 0.1283 0.1333 0.1466 0.2665 0.2753 0.2933
becomes large, the present approximation, Eq. by means of Egs. (23) and (27), we have

(27), gives much closer values than that of 1—g\1/3 l—a\ R2
Stechkina and Fuchs [Eq. (28)] in spite of its n=26 <—> Pe 27 4 <A>

— K JI+R
simplified form. (33)
Equation (33) is the final equation for the single
COMBINED DIFFUSION fiber efficiency for diffusion and interception for
AND INTERCEPTION the case where the filter fibers are transverse to

the flow. This result is plotted in Figure 1,
together with the results of Yeh and Liu (1974a)
and Stechkina et al. (1969). Yeh and Liu con-
sidered diffusion, interception, and inertial im-
paction simultaneously and solved for filtration
efficiency numerically, while Stechkina et al
used a separate expression for each filtration
mechanism plus a combination term for diffu-
sion and interception to fit their numerical
results. It is seen in Figure 1 that Eq. (33) is in
satisfactory agreement with these theoretical
results for the region where Pe<30,000 and
R <0.2. This comparison further confirms that
the effect of inertial impaction mechanism in the
indicated filtration regime is indeed not signifi-
cant and that the two asymptotic expressions for
diffusional and interceptional filtration efficien-
cles can be additive. ‘

Although Eq. (33) can be directly used for
H=np+Hyg; (32) practical applications, it is more convenient for

One of the simplest ways to combine the
diffusion and the interception mechanisms with
a reasonable accuracy is to add the two in-
dividual efficiencies to obtain the combined
efficiency. This practice is based on the assump-
tion that only one mechanism is predominant,
the contribution made by the other mechanism
being small. This assumption has been found to
be adequate for combining the diffusion and the
interception mechanisms. As shown in Eq. (23),
the efficiency due to diffusion decreases with
increasing particle size, whereas the efficiency
due to interception increases rapidly with in-
creasing particle size [see Eq. (27)]. Therefore,
this simple practice has given reasonable results
for the combined efficiencies.

With the above assumption, and assuming
that impaction is unimportant, we have
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FIGURE 1. Comparison of Eq. (33) (— ) with

the theories of Stechkina et al. (1969) (= - -) and
Yeh and Liu (1974a) (— + —).

purposes of correlating experimental data to
modify the equations as follows. Following the
method used by Friedlander (1958) and
Spielman and Goren (1969), we multlply both

sides of Eq. (33) by PeR/\/H-R We then
obtain

1
nPe ———v

JIiR

l—a el/3 R
K 1+R

-
- < K > 1+R)3/2

—26 (177 Pe”3
K

=26

[\

1+R

+ [(““)m peris R T (34)
K JI+R]

This equation states that in the diffusion and
ihtcrception regime the quantity yPeR /\/1—+ R
should be a single-valued function of the param-
eter [(1 /K]‘”Pe‘”R/\/H—R Figure 2 is
the plot of Eq. (34) using these parameters. The
theory of Yeh and Liu for a=0.1, D;=10 um,
and U,=1 cm/sec is included for comparison.

EMPIRICAL CORRELATION

Most real filters are made of fibers that are
randomly oriented, rather than perpendicular to
the plane as adopted in the present model. Often
times, fibers are not uniformly distributed and
phenomena such as channel flow and shadow-
ing can occur. The existing theories take into
account the nonideal characteristics of - the



Theoretical Study of Aerosol Filtration

1000

155

T TTTTH

T T TTTT]

T T TTTT

FIGURE 2. Comparison of Eq. (34)
with the theory of Yeh and Liu (1974a).
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Q=01
Df= IO/..LIT\

Ll

PRESENT THEORY

ol

Corornu

L lfl"lllll L L L1

0.0l

fibrous filters by defining an empirical factor such
as effective fiber diameter factor (Davies, 1952),
inhomogeneity factor (Stechkina et al., 1969), or
effective fiber length (Yeh and Liv, 1974b). This
factor is obtained by comparing the experi-
mental pressure drop and that predicted by the
flow field. Although this method is found to be
useful, it is difficult to justify such a direct
incorporation of pressure drop into the mecha-
nisms giving filtration efficiencies. In the present
study, therefore, the relationships between the

parameters #PeR/./1+R and [(1—a)/K]'"?
x Pe!®R /. /1+ R will be determined empiri-

ol | 10

L
(‘Ta) Pe’ R//TTR

-

cally using experimental data (Lee, 1977; Lee
and Liu, 1982); the constants appearing on the
right-hand side of Eq. (33) or (34) will then be
deduced from the experimental data.

For the purpose of comparing with experi-
mental data, we first write Eq. (33) as follows:

1—a\'3 1—a\ R?
1= (52) e o (152)

(35)
where f, and f, are empirical constants to be
derived from the experimental data. With these
correlation constants, Eq. (34) then becomes



K.W.Leeand B. Y. H. Liu

FIGURE 3. Correlation of filtration
data in the form of Eq. (35).
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In Figure 3 the quantity nPeR/\/T¥f is

plotted against- [(1-«)/K]'*Pe' "R/ /1+R
using the experimental data for Dacron filters
with solidities of 0.0086, 0.0474, and 0.151. The

10

particle sizes ranged from 0.05 to 1.3 um. The
corresponding interception parameter was from
0.0045 to 0.12. The maximum Stokes number
was 0.22. Figure 3 shows that nearly all the
experimental data fall on a single-valued curve,
as the theory has predicted. Further, Eq. (36)
shows that the slope of the curve on this log—log
plot should be 1 for small values of the param-
eter [(1—a)/K]"*Pe'*R//1+R and ap-
proaches 3 for large values. These are indeed
realized, indicating that the analysis is valid and
that the simple procedure of adding the single-
fiber efficiencies due to diffusion and intercep-
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tion is indeed correct. Further, the constants f3,
and f3, are found to have the values 1.6 and 0.6,
respectively. This leads to the following equa-
tion for the empirical correlation:

1—ua R’
06 [~ pe 37
- 6<K>e(1+R)3’2 67

and the equation

1~ 1/3 ‘
n=1.6 <‘;oc> Pe2?
K

2
+0.6 <L_a> K
K J1+4R (38)
for the single-fiber efficiency.

It can be easily seen from Figure 3 that the
value of # is due almost entirely to the contribu-
tion of the first term in Eq. (38) when
[(1—u)/K]'*Pe'?R/ /1+R <03, and the
second term predominates when the value of
this parameter is larger than 3. This result can be
used as a criterion for determining whether
filtration can be considered as pure diffusion or
as pure interception. When the value of the
parameter is smaller than 0.3, the diffusion
mechanism predominates. When the value is
larger than 3, interception predominates.
However, in the range from 0.3 to 3, both
mechanisms are important.

Other forms of empirical correlations can be
suggested by the different theoretical equations
for the diffusion and interception efficiencies.
For instance, using Eqgs. (23) and (30) for the
diffusion and interception efficiencies, we should
expect an empirical correlation between the
parameters yPeR and [(1—a)/K]'*Pe'’R.
Similarly, using the Stechkina-Fughsequation
for the diffusion efficiency (but dropping the
second term in the equation shown in Table 1)
and Natansons’s equation [Eq. (29)] for inter-
ception, we should expect an empirical corre-
lation between the parameters nPeR and
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K ~'73Pe!*R. The degree of correlation between
these parameters was found to be about equal to
the one shown in Figure 3. However, it is
believed that with a wider range of values in o or
R the present correlation should improve over
these. Similarly, the original analysis of
Friedlander (1958) suggested a correlation be-
tween the parameters 7PeR and Pe'/*Re'’R.
This correlation, shown in Figure 4, gives
somewhat greater scatter, especially for high
values of Pe'*Re'*R, and consequently is less
satisfactory.

To observe how the semiempirical correlation
of Eq. (38) can reproduce the experimental data,
the comparisons shown in Figures 5 and 6 have
been prepared. It is seen that the variation of
efficiency with respect to size and the variation
with respect to solidity are both predicted with
satisfactory accuracy by means of Eq. (38) at
different filtration velocities.

CONCLUSIONS

The filtration theory for diffusion and intercep-
tion developed in the study has a rather simple
form, yet it has been found successful in correlat-
ing filtration efficiency in the region of maximum
penetrating particle size with good accuracy. It
was also demonstrated that the present approxi-
mation can better represent the filter solidity
dependence of the filtration efficiency than the
other comparable theories.

The successful comparison of the present
theory with the experimental data indicates that
the main filtration mechanisms involved in the
region of minimum efficiency are diffusion and
interception, with the impaction mechanism
playing only a minor role.

APPENDIX
THE KUWABARA FLOW FIELD

The Kuwabara flow field represents a solution
of the two-dimensional viscous flow equation
for a system of cylinders placed transverse to the
flow. By drawing an imaginary coaxial bound-
ary around a cylinder, the filter solidity « can be
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made equal to that of the coaxial cylinders, 1.¢.,
a=R{/b?. Based on the assumption of vanish-
ing vorticity on the outer boundary, Kuwabara
obtained the following expressions for the
stream function and velocity components:

u ¥ R? o
f

3 2
- IZ} sin 6, (A1)
f
where K= —3% In a—32+o—40? is called the

Kuwabara hydrodynamic factor.

Although the expression for the stream func-
tion in the original Kuwabara flow field does not
appear to be very complicated, it is necessary to
reduce it to a simpler form for certain appli-
cations in theoretical analyses. To obtain an
approximation under certain conditions, let us
introduce the dimensionless quantities

r'=r/Ry, Y=y /uR, (A2)
and write the stream function appearing in Eq.
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(A.1) in dimensionless form:
W =0 2K)[2 In r—1+1/?)
—a(—1+1/2r*+1r%)] sin 0. (A.3)

Using the series expansion for In # valid for
¥ >+ we have

In ¥ — =1 1 r’—Iy2
nr= r Jr2 r
+1 r—1 +
3 r

Using the first two terms as an approximation,
we have

¥ |:2(r’ —1)?

(A4)

T

r2__1 2
—o u} sin 6.

},Z

772 (A.5)
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It should be noted that ' has been assumed to be
close to unity so that the approximation is good
only for the region near the fiber surface. The
error in the approximation is

1001 1
"23;< : >51n8.

To make the expression even simpler, we further
approximate Eq. (A.5) as

' g 2 2
b~ I’([“ L “;21) } sin 0, (A7)

under the assumptions ' ~1 and «~0. The
magnitude of the error involved in the second
approximatton is

o (K430 —1)

Y= gg st Ay

Ay = (A.6)

It can be noted that the errors in the two
approximations tend to cancel each other, since
Ay, 1s positive. Thus, the stream function can
be written

V' =[(1—o0)/Kr](r — 1) sin 6, (A9)
or, in dimensional terms,
W =[u(l —o)/Kr](r—R)? sin 0. (A.10)

Theerror involved in the use of the approximate
Eq. (A.9) is

Ay =AY+ A

v =17 =1
B E |:_ HZ3”< r >
’ 3 /_13
+ %(r * 1(,}; )] sin (A.11)

Equation (A.11) indicates that the magnitude of
error involved in the present approximation is
A(r'—1)3, and this should be very small for /'~ 1,
In order to check this further, i’ has been
calculated using Eq. (A.3) for the case where
=001, ¥=1.1, and #==,/2 and found to be
0.00594. On the other hand, Eq. (A.9) gives the
value 0.00576.

In order to determine the limitations due to

K. W.Leeand B. Y. H. Liu

the use of Eq. (A.9) in place of Eq. (A.3), let us
examine Eq. (A.11) in further detail. As men-
tioned earlier, the conditions that ¥’ ~ 1 and a ~ 0
are the principal limitations. However, these
limitations can be somewhat eased under the
following circumstances. In most applications of
fibrous filter « is small, and therefore ¥ ~ 1 is the
only limitation. In such cases, Ay, is larger than
Ay, in Eq. (A.9), resulting in an underestimation
of the value of the stream function. If # is
maintained very close to unity, Eq. (A.11) can be
further written

lim, _,, Ay’ ~(1/K)} =3+ o)’ —1)* sin 6

(A.12)

The equation indicates that the error involved in
the present approximation approaches zero
with o approaching 4. This means that the
approximation becomes better when « is close to
4 as long as ¥'~1. For example, with oc—z,
¥=11, and 6=n/2, Egs. (A.3) and (A.9) give
' =0.05765 and 0.05779, respectively. It should
be noted that the error is smaller than that
shown in the preceding example in spite of the
increasing solidity. It is apparent that Eq. (A.9)
should remain a good approximation for o well
over 3,say 0.4 or 0.5. It should also be noted that
for such high solidities, Ay, is larger than Ay’
in absolute magnitude, and Eq. (A.9) gives a
higher value for ¥'.

The velocity components can be obtained
from the stream function [Eq. (4)] in the
following way:

R T N
= — = (¥ —1) sin 0
(1-a) L
— T* (r —1)2 ﬁ sin 6
Az
jad ‘—I<7—’ (l —1) Sin H, (A13)

or, in dimensional form,

2(1— r—R
Ug= _( KOL)M <¥rr> sin 6.

(A.14)
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Similarly,
, 1 0 7’
T
1—a )
= < (r' —1)? cos 6 (A.15)
or
_ R \2
y= U K“)Lf <’__R!> cos 6. (A.16)
P

Equations (A.14) and (A.16) also can be com-
pared with the original Kuwabara expressions
appearing in Egs. (A.l). As mentioned,
Stechkina and Fuchs (1966) approximated Egs.
(A.1) by omitting all the terms containing a.
Owing to the omission of ¢, their approximation
becomes less accurate than the present approxi-
mation as o is increased.
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