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Abstract

We use COVID-19 case and mortality data from 1 February 2020 to 21 September 2020

and a deterministic SEIR (susceptible, exposed, infectious and recovered)

compartmental framework to model possible trajectories of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infections and the effects of non-pharmaceutical

interventions in the United States at the state level from 22 September 2020 through 28

February 2021. Using this SEIR model, and projections of critical driving covariates

(pneumonia seasonality, mobility, testing rates and mask use per capita), we assessed

scenarios of social distancing mandates and levels of mask use. Projections of current
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non-pharmaceutical intervention strategies by state—with social distancing mandates

reinstated when a threshold of 8 deaths per million population is exceeded (reference

scenario)—suggest that, cumulatively, 511,373 (469,578–578,347) lives could be lost to

COVID-19 across the United States by 28 February 2021. We find that achieving universal

mask use (95% mask use in public) could be sufficient to ameliorate the worst effects of

epidemic resurgences in many states. Universal mask use could save an additional

129,574 (85,284–170,867) lives from September 22, 2020 through the end of February

2021, or an additional 95,814 (60,731–133,077) lives assuming a lesser adoption of mask

wearing (85%), when compared to the reference scenario.

Main

The zoonotic origin of the novel severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2)  first reported in Wuhan, China , and the global spread of the coronavirus

disease 2019 (COVID-19; https://covid19.who.int/)  promises to be a defining global

health event of the twenty-first century . This pandemic has already resulted in extreme

societal, economic and political disruption across the world and in the United States

(https://www.economist.com/united-states/2020/03/14/tracking-the-economic-

impact-of-covid-19-in-real-time/) . The establishment of SARS-CoV-2 and its rapid

spread in the United States has been dramatic

(https://www.thinkglobalhealth.org/article/updated-timeline-coronavirus/). Since the

first case in the United States was identified on 20 January 2020 (ref. ; first death on 6

February 2020: https://www.sccgov.org/sites/covid19/Pages/press-release-04-21-20-

early.aspx), SARS-CoV-2 has spread to every state and has resulted in more than 28.2

million cases and 199,213 deaths as of 21 September 2020

(https://coronavirus.jhu.edu/map.html) .

There remains no approved vaccine for the prevention of SARS-CoV-2 infection, and few

pharmaceutical options for the treatment of COVID-19 are available . The most

optimistic scientists do not predict the availability of new vaccines or therapeutics
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before 2021 (refs. ). Non-pharmaceutical interventions (NPIs) are, therefore, the

only available policy levers to reduce transmission . Several NPIs have been put in place

across the United States in response to the epidemic (Fig. 1), including the dampening of

transmission through the wearing of face masks and social distancing mandates (SDMs)

aimed at reducing contacts through school closures, restrictions of gatherings, stay-at-

home orders and the partial or full closure of nonessential businesses. Increased testing

and isolation of infected individuals and their contacts will also have had an impact .

These NPIs are credited with a reduction in viral transmission , along with a host of

other environmental, behavioral and social determinants postulated to affect the course

of the epidemic at the state level.

Fig. 1: Number of social distancing mandates by US state from 1 February 2020

to 22 September 2020.
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States are ordered by decreasing population size on the y axis.

Source data
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In the United States, decisions to implement SDM or require mask use are generally

made at the state level by government officials. These executives need to balance net

losses from the societal turmoil, economic damage and indirect effects on health caused

by NPIs with the direct benefits to human health of controlling the epidemic. Disease

control has often been operationally defined in this pandemic context as the restriction

of infections to below a specified level at which health services are not overwhelmed by

demand and the loss of human health and life is consequently minimized .

In the first months of the SARS-CoV-2 outbreak in the United States, states enacted

restrictive SDMs intended to reduce transmission (by limiting human-to-human

contact) , while there was conflicting advice on the use of masks

(https://www.npr.org/sections/goatsandsoda/2020/04/10/829890635/why-there-so-

manydifferent-guidelines-for-face-masks-for-the-public/). At that early stage, relatively

simple statistical models of future risk were sufficient to capture the general patterns of

transmission . As different behavioral responses to SDMs emerged and, more

importantly, as some states began to relax SDMs (Fig. 1), a modeling approach that

directly quantified transmission and could be used to explore these developing

scenarios was necessary. As states varied in their actions to remove and reinstate SDMs

(Fig. 1) or began to issue mandatory mask-use orders

(https://www.cnn.com/2020/06/19/us/states-face-mask-coronavirus-trnd/index.html)

amid resurgences of COVID-19

(https://www.nytimes.com/2020/07/01/world/coronavirus-updates.html), a clear need

for evidence-based assessments of the possible effect of the NPI options available to

decision-makers became apparent.

There is now growing evidence that face masks can considerably reduce the

transmission of respiratory viruses like SARS-CoV-2, thereby limiting the spread of

COVID-19 (refs. ). We updated a recently published review  to generate a new

meta-analysis (Supplementary Information) of peer-reviewed studies and preprints to

assess the effectiveness of masks at preventing respiratory viral infections in humans .

This analysis indicated a reduction in infection (from all respiratory viruses) for mask
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wearers by 40% (relative risk = 0.60, 95% uncertainty interval (UI) = 0.46–0.80)) relative

to controls . This is suggestive of a considerable population health benefit to mask use

with great potential for uptake in the United States, where the national average for self-

reported mask wearing was 49% as of 21 September 2020

(https://covid19.healthdata.org/; Supplementary Information).

Here we provide a state-level descriptive epidemiological analysis of the introduction of

SARS-CoV-2 infection across the United States, from the first recorded case through to

21 September 2020. We use these observations to learn about epidemic progression and

thereby model the first wave of transmission using a deterministic SEIR compartmental

framework . This observed, process-based understanding of how NPIs affect

epidemiological processes is then used to make inferences about the future trajectory of

COVID-19 and how different combinations of existing NPIs might affect this course. Five

SEIR-driven scenarios, along with covariates that inform them, were then projected

through to 28 February 2021 (Methods). We use these scenarios as a sequence of

experiments to describe a range of model outputs, including R  (the change over

time in the average number of secondary cases per infectious case in a population where

not everyone is susceptible ), infections, deaths and hospital demand outcomes,

which might be expected from plausible boundaries of the policy options available the

fall and winter of 2020 (see Methods and Supplementary Information for an extended

rationale on scenario construction).

We established three boundary scenarios. First, we forecast the expected outcomes if

states continue to remove SDMs at the current pace of ‘mandate easing’, with resulting

increases in population mobility and number of person-to-person contacts. This is an

alternative scenario to the more probable situation where states are expected to

respond to an impending health crisis by reinstating some SDMs. In the second,

‘plausible reference’ scenario, we model the future progress of the pandemic assuming

that states would once again shut down social interaction and some economic activity at

a threshold for the daily death rate of 8 deaths per million population—the 90th

percentile of the observed distribution of when states previously implemented SDMs
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(Fig. 1 and Supplementary Information). This scenario assumes reinstatement of SDMs

for 6 weeks. In addition, newly available data on mask efficacy enabled the exploration of

a third, ‘universal mask-use’ scenario to investigate the potential population-level

benefits of increased mask use in addition to the same threshold-driven reinstatement

of SDMs. In this best-case scenario model, ‘universal’ was defined as 95% of people

wearing masks in public, based on the highest observed coverage of mask use globally

(in Singapore) during the COVID-19 pandemic to date (Supplementary Information).

Two derivative scenarios were also included to assist understanding, nuance and policy

resolution around the three boundary scenarios. The first scenario, termed ‘plausible

reference + 85% mask use’, modeled less than universal mask use in public (85%) in the

presence of reinstatement of SDMs. The second was a scenario of universal mask use

(95%) in the absence of any NPIs (termed ‘mandate easing + universal mask use’). Details

and results for these additional scenarios are in the Supplementary Information. In

addition, sensitivity analyses and detailed diagnostics are provided to help users

calibrate the effects of the covariates used in the models on the scenarios discussed

(Supplementary Information).

Results

Observed COVID-19 patterns

The COVID-19 epidemic has progressed unevenly across states. Since the first death was

recorded in the United States in early February 2020, cumulative through 21 September

2020, 199,213 deaths from COVID-19 have been reported in the United States (Fig. 2); a

sixth of those (16.6%) occurred in New York alone. Washington and California issued the

first sets of state-level mandates on 11 March 2020, prohibiting gatherings of 250 people

or more in certain counties, and by 23 March 2020, all 50 states initiated some

combination of SDMs (Fig. 1). The highest levels of daily deaths at the state level between

February and September of 2020 occurred in New York, New Jersey and Texas at 998, 311

and 220 deaths per day, respectively (Fig. 3 and Extended Data Fig. 1). On 21 September

2020, the highest level of daily deaths was in Florida at 101 deaths per day. A critical
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policy need at this stage of the modeling was the forecasting of hospital resource

demands in the US states with the worst effective transmission rates (Virginia, New York

and Missouri; Fig. 4). The highest peak demand was observed as 8,380 hospital intensive

care unit (ICU) beds in New York (estimated initial hospital ICU bed availability of 718) on

April 10 and 2,786 hospital ICU beds in New Jersey (estimated initial hospital ICU bed

availability of 466) on April 21; demand for hospital ICU beds had receded to within

initial capacity levels across the United States by 21 September 2020 (Extended Data Fig.

3). Hospital resource demands (all bed capacity) had been exceeded in the period before

21 September 2020 in three states (New York, New Jersey and Connecticut; Extended

Data Figs. 2 and 3).

Fig. 2: Cumulative deaths from 1 February 2020 to 28 February 2021.
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The inset map displays the cumulative deaths under the plausible reference scenario on 28

February 2021. A light-yellow background separates the observed and predicted part of the

time series, before and after 22 September 2020. The dashed vertical line identifies 3

November 2020. Solid lines represent boundary scenarios and dashed lines represent

derivative scenarios. Numbers are the means and UIs for the plausible reference scenario on

the highlighted dates. An asterisk indicates states with population centers exceeding 2 million

persons. UIs are shown for only the plausible reference scenario.
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Source data

Fig. 3: Daily deaths from 1 February 2020 to 28 February 2021.

The inset map displays the daily deaths under the plausible reference scenario on 28

February 2021. A light-yellow background separates the observed and predicted part of the
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time series, before and after 22 September 2020. The dashed vertical line identifies 3

November 2020. Solid lines represent boundary scenarios and dashed lines represent

derivative scenarios. Numbers are the means and UIs for the plausible reference scenario on

the highlighted dates. An asterisk indicates states with population centers exceeding 2 million

persons. UIs are shown for only the plausible reference scenario.

Source data

Fig. 4: Time series for values of R  by US state.effective
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Inset maps display the value of R  on 3 November 2020 and 28 February 2021; time

series of R  are presented for each state as separate panels. A light-yellow background

separates the observed and predicted part of the time series, before and after 22 September

2020. The dashed vertical line identifies 3 November 2020. An asterisk indicates states with

population centers exceeding 2 million persons.

Source data
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Predicted COVID-19 patterns

Under a boundary scenario where states continue with removal of SDMs (mandate

easing), our model projections show that cumulative total deaths across the United

States could reach 1,053,206 (759,693–1,452,397) by 28 February 2021 (Fig. 2 and Table

1). At the state level, contributions to that death toll would be heterogeneously

distributed across the United States. Approximately one-third of the deaths projected

from 22 September 2020 to 28 February 2021 in this scenario would occur across just

three states: California (146,501 (84,828–221,194) deaths), Florida (66,943 (40,826–

96,282) deaths) and Pennsylvania (62,352 (30,318–93,164) deaths). The highest

cumulative death rates (per 100,000) from 22 September 2020 to 28 February 2021 are

predicted to occur in Rhode Island (605.1 (428.1–769.0) deaths per 100,000)),

Massachusetts (561.4 (315.8–901.3) deaths per 100,000), Connecticut (547.8 (209.3–

978.2) deaths per 100,000) and Pennsylvania (541.1 (294.7–778.3) deaths per 100,000;

Extended Data Fig. 4 and Table 1). By the US national election on 3 November 2020, a

total of five states are predicted to exceed a threshold of daily deaths of 8 deaths per

million (Fig. 3), and a total of 40 states would have an R  greater than one (Fig. 4).

By 28 February 2021, a total of 45 states are predicted to exceed that threshold under

this scenario, and all states would reach an R  of greater than one before the end of

February 2021 (Table 1 and Fig. 4). This scenario results in an estimated total of

152,775,751 (115,305,817–199,130,145) infections across the United States by the end of

February 2021 (Extended Data Fig. 5). The highest infection levels in states relative to

their population size are estimated to occur in Arizona (71.2% (61.5–80.8%) infected),

New Jersey (68.2% (47.5–84.1%) infected) and Rhode Island (65.5% (50.0–79.7%) infected;

Extended Data Fig. 6). Further results for projected hospital resource-use needs are

presented in Extended Data Figs. 2 and 3, and forecasted infections under this scenario

are available in Extended Data Figs. 7 and 8.

Table 1 Cumulative deaths from 22 September 2020 through 28 February 2021,
maximum estimated daily deaths per million, date of maximum daily deaths
and estimated R  on 28 February 2021 for three boundary scenarios

effective

effective

effective

Download PDF

https://www.nature.com/articles/s41591-020-1132-9.pdf


When we modeled the future course of the epidemic assuming that states will once

again shut down social interaction and economic activity when daily deaths reach a

threshold of 8 deaths per million (plausible reference scenario), the projected

cumulative death toll across the United States is forecast to be lower than that under the

mandate-easing scenario, with 511,373 (469,578–578,347) deaths by 28 February 2021

(Fig. 2). Thus, across the 45 states that are projected to exceed daily deaths of 8 deaths

per million under the mandate-easing scenario by the end of February 2021 (Table 1), the

reinstatement of SDMs under the plausible reference scenario could save 541,738

(281,283–886,373) lives. This scenario also results in 80,798,356 (47,333,280–

121,526,052) fewer estimated infections across the United States by the end of February

2021 (Extended Data Fig. 5) compared with the mandate-easing scenario, with the

highest rates of infections estimated to occur in Arizona (46.2% (38.8–55.9%) infected),

New Jersey (41.1% (35.1–50.8%) infected) and Louisiana (33.3% (29.9–37.4%) infected)

(Extended Data Fig. 6). As with the previous scenario, even with the reinstatement of

SDMs when daily deaths exceed 8 per million population, all states would reach an

R  greater than one before the end of the February 2021 (Fig. 4 and Table 1). Further

results for hospital resource-use needs are presented in Extended Data Figs. 2 and 3 and

forecast infections by state under this scenario are presented in Extended Data Figs. 7

and 8.

The universal mask-use scenario where the population of each state was assumed to

adopt and maintain a 95% level of mask use in public (Methods)—in addition to states

reinstating SDM if a threshold daily death rate of 8 deaths per million population was

exceeded—resulted in the lowest projected cumulative death toll across US states, with a

total of 381,798 (336,479–421,953) cumulative deaths by 28 February 2021 (Fig. 2 and

Table 1). Under this scenario, on 3 November 2020, no states will have exceeded a daily

death rate of 8 deaths per million (Fig. 3), although 47 states are still estimated to exceed

an R  of 1.0 at some point in the projected period, and three states would have an

R  greater than 1.0 on 28 February 2021 (Fig. 4). Through the end of the February

2021, the daily death rate is forecast to exceed 8 deaths per million in nine states

(California, Colorado, Massachusetts, New Jersey, New Mexico, North Carolina, North

effective
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effective
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Dakota, Pennsylvania and Rhode Island; Table 1) saving 129,574 (85,284–170,867) lives

when compared to the plausible reference scenario and 671,407 (376,883–1,046,250)

lives when compared to the mandate-easing scenario. Universal mask use combined

with threshold-driven implementation of SDM results in 17,408,352 (11,278,442–

23,291,371) fewer estimated infections across the United States by the end of February

2021 compared with the plausible reference scenario, and 98,106,708 (59,908,817–

142,318,907) fewer estimated infections compared to the mandate-easing scenario

(Extended Data Fig. 5). The highest infection rates under the 95% mask-use scenario are

estimated to occur in Arizona (38.1% (28.0–43.3%) infected), New Jersey (35.7% (30.2–

41.0%) infected) and Delaware (28.2% (23.3–31.1%) infected) (Extended Data Fig. 6).

Further results for hospital resource-use needs are presented in Extended Data Figs. 2

and 3, and forecast infections under this scenario are available in Extended Data Figs. 7

and 8.

To provide additional policy nuance to the three boundary scenarios, we also examined

plausible reference + 85% mask use and mandate-easing + universal mask-use scenarios

(Figs. 2–4, Extended Data Figs. 1 and 4–8 and Supplementary Information). In brief, the

plausible reference + 85% mask-use scenario saves a considerable number of lives at the

national level (95,814 (60,731–133,077) over and above the reference scenario, but is not

as effective as the plausible reference + universal mask-use scenario. Although not

surprising, this does help to confirm that any additional coverage that can be achieved

through mask use will save lives. The mandate-easing + universal mask-use scenario

reveals substantial lives saved (20,936 (0–102,507)) over the plausible reference

scenario, even in the absence of reinstatement of SDMs at the daily threshold of 8 deaths

per one million population, underscoring the potential effects that increased levels of

mask adoption could have while minimizing the deleterious economic repercussions of

other NPIs.

Two out-of-sample (OOS) model assessments were conducted for two different time

intervals of the modeling period to investigate the strength of evidence behind each of

the covariate drivers of SARS-CoV-2 transmission intensity. Full details of these
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sensitivity analyses are shown at the national level in the Supplementary Information.

These analyses indicate that care needs to be taken in interpreting the strength of these

relationships, which show variability in time and space. For example, our OOS tests

indicate that over some time frames, pneumonia mortality seasonality was either the

most or least useful covariate, despite in-sample tests having consistently shown this to

be an important predictor. Since pneumonia seasonality is one of the leading covariates

driving expected increases in COVID-19 deaths in the fall and winter, it is important to be

aware of this uncertainty when assessing the forecasts. It is critical to note, however, that

even when we completely remove this covariate from our model, sensitivity analyses

show a forecast of over 100,000 deaths from COVID-19 by the end of winter (101,615

(81,479–126,295) additional deaths; Supplementary Information). Since this covariate

complexity makes it difficult to generalize the effects of this uncertainty, we provide

extensive diagnostics for the covariate relationships in each of the states with examples

of how to interpret these findings (Supplementary Information).

Model performance

The models presented here have been evaluated for OOS predictive validity using

standard tests and metrics in an ongoing fashion and in a publicly available framework .

These SEIR models have consistently produced among the most accurate forecasts

observed across models compared . For example, for models released in June, the

Institute for Health Metrics and Evaluation (IHME) SEIR model had the lowest median

absolute percentage error (MAPE) at 10 weeks of forecasting at 20.2%, compared to

32.6% across models. We have included new sets of model and covariate diagnostics with

worked descriptions for the most populous states (Supplementary Information and

Supplementary Data 1–4) for transparent evaluation of our model performance. We

emphasize that these are forecasts of possible futures, which are subject to many model

assumptions and sources of data variability.

Discussion
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We have delimited three possible future scenarios of the course of the COVID-19

epidemic in the United States, at the state level—mandate-easing, plausible reference

and universal mask-use scenarios—to help frame and inform a national discussion on

what actions could be taken during the fall of 2020 and the public health, economic and

political influences that these decisions will have for the rest of the winter (here defined

as the end of February 2021). To help us understand the policy nuances of these

boundary scenarios, two derivative scenarios (plausible reference + 85% mask use and

mandate easing + universal mask use) were also explored. In addition, selected

sensitivity analyses were conducted for the covariates used in the models, so that their

influence could be better understood.

Under all scenarios evaluated here, the United States is likely to face a continued public

health challenge from the COVID-19 pandemic through 28 February 2021 and beyond,

with populous states in particular potentially facing high levels of illness, deaths and ICU

demands as a result of the disease. The implementation of SDMs as soon as individual

states reach a threshold of 8 daily deaths per million could dramatically ameliorate the

effects of the disease; achieving near-universal mask use could delay, or in many states,

possibly prevent, this threshold from being reached and has the potential to save the

most lives while minimizing damage to the economy. National and state-level decision-

makers can use these forecasts of the potential health benefits of available NPIs,

alongside considerations of economic and other social costs, to make more informed

decisions on how to confront the COVID-19 pandemic at the local level. Our findings

indicate that universal mask use, a relatively affordable and low-impact intervention, has

the potential to serve as a priority life-saving strategy in all US states. Our derivative

scenarios suggest that this likely remains true at sub-universal levels of mask coverage

and at universal mask coverage in the absence of any other NPIs.

New epidemics, resurgences and second waves are not inevitable. Several countries,

such as South Korea, Germany and New Zealand have sustained reductions in COVID-19

cases over time (https://covid19.healthdata.org/). Early indications that seasonality may
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play a role in transmission, with increased spread during colder winter months as is seen

with other respiratory viruses , highlight the importance of taking action both

before and during the pneumonia season in the United States. While it is yet unclear if

COVID-19 seasonality will follow the pattern of related coronaviruses  and parallel that

of pneumonia seasonality, the sometimes strong associations observed in these

forecasts indicate that increased government vigilance is prudent. Moreover, given the

potential sensitivity of the model to effects of seasonality, a substantial winter effect

cannot be ruled out. This effect would be against a background of more widespread and

prevalent COVID-19 infection than experienced in the first wave.

Mask use has emerged as a contentious issue in the United States with only 49% of US

residents reporting that they ‘always’ wear a mask in public as of 21 September 2020

(https://covid19.healthdata.org/). Regardless, toward the end of 2020, masks could help

to contain a second wave of resurgence while reducing the need for frequent and

widespread implementation of SDMs. Although 95% mask use across the population

may seem a high threshold to achieve and maintain, on a neighborhood scale this level

has already been observed in areas of New York

(https://www.nytimes.com/2020/08/20/nyregion/nyc-face-masks.html); and on a state

level, reported mask use has exceeded 60% in Virginia, Florida and California (see

Supplementary Information for related methods). In countries where mask use has been

widely adopted, such as Singapore, South Korea, Hong Kong, Japan and Iceland among

others, transmission has declined and, in some cases, halted

(https://covid19.healthdata.org/). These examples serve as additional natural

experiments  of the likely effects of masks and support the assumptions and findings

from the universal mask-use scenario in our study. The potential life-saving benefit of

increasing mask use in the coming fall and winter cannot be overstated. It is likely that

US residents will need to choose between higher levels of mask use or risk the frequent

redeployment of more stringent and economically damaging SDMs; or, in the absence of

either measure, face a reality of a rising death toll . Longer term, the future of COVID-19

in the United States will be determined by the deployment of an efficacious vaccine and

the evolution of herd immunity .
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This work represents the outputs of a class of models that aim to abstract the disease

transmission process in populations to a level that is tractable for understanding, and, in

this case, that can be used for prediction. A clear limitation of any such modeling

exercise is that it will be constrained by data (disease and relevant covariates), the model

of understanding developed and the length of time available to the model to learn/train

the important dynamics. We have therefore tried to benchmark our model against

alternative models of the COVID-19 pandemic and fully document our predictive

performance with a range of measures . In addition, we have provided all the data and

model code to enable full reproducibility and increased transparency, provided

sensitivity analyses to some of our core assumptions; and presented a range of likely

futures  in the form of mandate-easing, plausible reference and universal mask-use

scenarios (as well as two derivative scenarios thereof) for decision-makers to review. In

addition, triangulation of other outputs of the SEIR model, such as the proportion of the

population that are affected, are also provided and tested against independent data, in

this case seroprevalence surveys (Extended Data Fig. 9). Finally, because uncertainty

compounds with increased distance into the future predicted, the data, model and its

assumptions will be iteratively updated as the pandemic continues to unfold

(https://www.latimes.com/opinion/story/2020-07-10/covid-forecast-deaths-ihme-

washington/).

We wish to reiterate to decision-makers that there are a multitude of limitations in any

modeling study of this type ; an extended description of the limitations specific to

this study is provided (Methods). Specifically, (1) these models are approximations of

real-world scenarios, and we have simplified many aspects of the epidemiological

process of disease transmission to make these models computationally feasible; (2)

these models are driven strongly by mortality data with all of its fidelity and recording

imperfections; (3) these models are also informed by a wealth of other data types that

each have differential availability, as well as detection and measurement bias issues for

which we can never fully calibrate; (4) these models make particular assumptions about

covariates, including seasonality, that while evidence-based and explicitly stated, are

subject to sensitivity analyses because their effects could be substantial; and (5) our
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knowledge of this dynamic pandemic improves daily, so there should be no expectation

that this modeling framework is final or that the data that drive it are fixed. While

acknowledging all of these policy-relevant limitations, we take care to note that our

publicly released model comparison framework  supports the robust, iterative and

objective evaluation of our modeling approach. This is especially valuable as the

complexities of the pandemic response require that our modeling efforts remain agile to

epidemiological and societal developments and that we continue to reevaluate and post

updates weekly (https://covid19.healthdata.org/). Finally, it is especially important for

decision-makers that we emphasize that we are not forecasting a future, but rather a

range of outcomes that we believe are more probable given the scenarios tested, based

on the data observed so far and our model assumptions. These forecasts are best

considered as helpful guides, rather than definitive maps.

Methods

Our analysis strategy supports two main and interconnected objectives: (1) to generate

forecasts of COVID-19 deaths, infections and hospital resource needs for all US states;

and (2) to explore alternative scenarios on the basis of changes in state-enforced SDMs

or population-level mask use. The modeling approach to achieve this is summarized in

the Supplementary Information and can be divided into four stages: (1) identification

and processing of COVID-19 data, (2) exploration and selection of key drivers or

covariates, (3) modeling deaths and cases across three boundary scenarios of SDMs in

US states using an SEIR framework and (4) modeling health service utilization as a

function of forecast infections and deaths within those scenarios. This study complies

with the Guidelines for Accurate and Transparent Health Estimates Reporting statement

(Supplementary Information).

Data identification and processing

IHME forecasts include data from local and national governments, hospital networks

and associations, the World Health Organization, third-party aggregators and a range of
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other sources. Data sources and corrections are described in detail in the

Supplementary Information and in the data availability statement. Briefly, daily

confirmed case and death numbers due to COVID-19 are collated from the Johns Hopkins

University data repository; we supplement and correct this dataset as needed to

improve the accuracy of our projections and adjust for reporting-day biases

(Supplementary Information). Testing data are obtained from Our World in Data

(https://ourworldindata.org/), The COVID Tracking Project (https://covidtracking.com/)

and supplemented with data from additional government websites (Supplementary

Information). Social distancing data are obtained from a number of different official and

open sources, which vary by state (Supplementary Information). Mobility data are

obtained from Facebook Data for Good (https://dataforgood.fb.com/docs/covid19/),

Google (https://www.google.com/covid19/mobility/), SafeGraph

(https://www.safegraph.com/dashboard/covid19-shelter-in-place/) and Descartes Labs

(https://www.descarteslabs.com/mobility/; Supplementary Information). Mask-use data

are obtained from the Facebook Global Symptom Survey (in collaboration with the

University of Maryland Social Data Science Center), the Kaiser Family Foundation,

YouGov COVID-19 Behavioural Tracker survey (https://today.yougov.com/covid-19/) and

PREMISE (https://www.premise.com/covid-19/; Supplementary Information). Specific

sources for data on licensed bed and ICU capacity and average annual utilization in the

United States are detailed in the Supplementary Information.

Before modeling, observed cumulative deaths are smoothed using a spline-based

smoothing algorithm with randomly placed knots . Uncertainty is derived from

bootstrapping and resampling of the observed deaths. The time series of case data is

used as a leading indicator of death based on an infection fatality ratio (IFR) and a lag

from infection to death. These smoothed estimates of observed deaths by location are

then used to create estimated infections based on an age distribution of infections and

on age-specific IFRs. The age-specific infections were collapsed into total infections by

day and state and used as data inputs in the SEIR model. Detailed descriptions of data

smoothing and transformation steps are provided in the Supplementary Information.
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Covariate selection

Covariates for the compartmental transmission SEIR model are predictors of the β

parameter in the model that affects the transition from the susceptible to exposed state;

specifically, β represents the contact rate multiplied by the probability of transmission

per contact. Covariates were evaluated on the basis of biological plausibility and on the

impact on the results of the SEIR model. Given limited empirical evidence of population-

level predictors of SARS-CoV-2 transmission, biologically plausible predictors of

pneumonia such as population density (percentage of the population living in areas with

more than 1,000 individuals per square kilometer), tobacco smoking prevalence,

population-weighted elevation, lower respiratory infection mortality rate and

particulate matter air pollution were considered. These covariates are representative at

a population level and are time invariant. Location-specific estimates for these

covariates are derived from the Global Burden of Disease Study 2019 (refs. ).

Time-varying covariates include pneumonia excess mortality seasonality, diagnostic

tests administered per capita, population-level mobility and personal mask use. These

are described below.

Pneumonia seasonality

We used weekly pneumonia mortality data from the National Center for Health Statistics

Mortality Surveillance System (https://gis.cdc.gov/grasp/fluview/mortality.html) from

2013 to 2019 by US state. Pneumonia deaths included all deaths classified by the full

range of the International Classification of Disease codes in J12–J18.9. We pooled data

over available years for each state and found the weekly deviation from the annual, state-

specific mean mortality due to pneumonia. We then fit a seasonal pattern using a

Bayesian meta-regression model with a flexible spline and assumed annual periodicity

(Supplementary Information). For locations outside the United States, we used vital

registration data where available. Locations without vital registration data had weekly

pneumonia seasonality predicted based on latitude from a model pooling all available

data (Supplementary Information).
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Testing per capita

We considered diagnostic testing for active SARS-CoV-2 infections as a predictor of the

ability for a state to identify and isolate active infections. We assumed that higher rates

of testing were negatively associated with SARS-CoV-2 transmission. Our primary

sources for US testing data were compiled by the COVID Tracking Project

(Supplementary Information). Unless testing data existed before the first confirmed

case in a state, we assumed that testing was non zero after the date of the first confirmed

case. Before producing predictions of testing per capita, we smoothed the input data by

using the same smoothing algorithm used for smoothing daily death data before

modeling (previously described). Testing per capita projections for unobserved future

days were based on linearly extrapolating the mean day-over-day difference in daily tests

per capita for each location. We put an upper limit on diagnostic tests per capita of 500

per 100,000 based on the highest observed rates in June 2020.

Social distancing mandates

SDMs were not used as direct covariates in the transmission model. Rather, SDMs were

used to predict population mobility (see below), which was subsequently used as a

covariate in the transmission model. We collected the dates of state-issued mandates

enforcing social distancing, as well as the planned or actual removal of these mandates.

The measures that we included in our model were: (1) severe travel restrictions, (2)

closing of public educational facilities, (3) closure of nonessential businesses, (4) stay-at-

home orders and (5) restrictions on gathering size. Generally, these came from state

government official orders or press releases.

To determine the expected change in mobility due to SDMs, we used a Bayesian,

hierarchical meta-regression model with random effects by location on the composite

mobility indicator to estimate the effects of social distancing policies on changes in

mobility (Supplementary Information).

Mobility
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We used four data sources on human mobility to construct a composite mobility

indicator. Those sources were Facebook, Google, SafeGraph and Descartes Labs

(Supplementary Information). Each source takes a slightly different approach to

capturing mobility, so before constructing a composite mobility indicator, we

standardized these different data sources (Supplementary Information). Briefly, this

first involved determining the change in a baseline level of mobility for each location by

data source. Then, we determined a location-specific median ratio of change in mobility

for each pairwise comparison of mobility sources, using Google as a reference and

adjusting the other sources by that ratio. The time series for mobility was estimated

using a Gaussian process regression model using the standardized data sources to get a

composite indicator for change in mobility for each location day.

We calculated the residuals between our predicted composite mobility time series and

input composite time series, and then applied a first-order random walk to the residuals.

The random walk was used to predict residuals from 1 January 2020 to 1 January 2021,

which were then added to the mobility predictions to produce a final time series with

uncertainty: ‘past’ changes in mobility from 1 January 2020 to 28 September 2020 and

projected mobility from 28 September 2020 to 1 January 2021.

Masks

We performed a meta-analysis of 40 peer-reviewed scientific studies in an assessment of

mask effectiveness for preventing respiratory viral infections (Supplementary

Information). The studies were extracted from a preprint publication . In addition, we

considered all articles from a second meta-analysis  and one supplemental

publication . These studies included both persons working in health care and the

general population, especially family members of those with known infections. The

studies indicate overall reductions in infections due to masks preventing exhalation of

respiratory droplets containing viruses, as well as some prevention of inhalation by

those uninfected. The resulting meta-regression calculated log-transformed relative

risks and corresponding log-transformed standard errors based on raw counts and used

a continuity correction for studies with zero counts in the raw data (0.001). We included
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additional specifications and characteristics to account for differences in the

characteristics of individual studies and to identify important factors impacting mask

effectiveness (Supplementary Information).

We used MR-BRT (meta-regression, Bayesian, regularized and trimmed), a meta-

regression tool developed at the Institute for Health Metrics and Evaluation

(Supplementary Information), to perform a meta-analysis that considered the various

characteristics of each study. We accounted for between-study heterogeneity and

quantified remaining between-study heterogeneity into the width of the UI. We also

performed various sensitivity analyses to verify the robustness of the modeled

estimates and found that the estimate of the effectiveness of mask use did not change

significantly when we explored four alternative analyses, including changing the

continuity correction assumption, using odds ratio versus relative risk from published

studies, using a fixed-effects versus a mixed-effects model and including studies without

information on covariates.

We estimated the proportion of people who self-reported always wearing a face mask

when outside in public for both US and global locations using data from PREMISE (US),

the Kaiser Family Foundation (US), YouGov (non-US) and Facebook (non-US) surveys

(Supplementary Information). We used the same smoothing model as for COVID-19

deaths and testing per capita to produce estimates of observed mask use. This

smoothing process averaged each data point with its neighbors. The level of mask use

starting on 21 September 2020 (the last day of processed and analyzed data) was

assumed to be flat. Among states without state-specific data, a within-the-US regional

average was used.

Deterministic modeling framework

Model specification is summarized in a schematic with additional details provided in the

Supplementary Information. To fit and predict disease transmission dynamics, we

include a SEIR component in our multistage model. In particular, the population of each

location is tracked through the following system of differential equations:
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where α represents a mixing coefficient to account for imperfect mixing within each

location, σ is the rate at which infected individuals become infectious, γ  is the rate at

which infectious people transition out of the presymptomatic phase and γ  is the rate at

which individuals recover. This model does not distinguish between symptomatic and

asymptomatic infections but has two infectious compartments (I  and I ) to allow for

interventions that would avoid focus on those who could not be symptomatic; I  is thus

the presymptomatic compartment.

Using the next-generation matrix approach, we can directly calculate both the basic

reproductive number under control (R (t)) and the effective reproductive number

(R (t)) as (Supplementary Information):

\(R_c\left( t \right) = \alpha \times \beta \left( t \right) \times \left( {I_1\left( t \right) +

I_2\left( t \right)} \right)^{\alpha - 1} \times \left( {\frac{1}{{\gamma _1}} + \frac{1}

{{\gamma _2}}} \right)\) and

\(R_{effective}\left( t \right) = R_c\left( t \right) \times \frac{{S\left( t \right)}}{N}\)

By allowing β(t) to vary in time, our model is able to account for increases in

transmission intensity as human behavior shifts over time (for example, changes in

mobility, adding or removing SDMs and changes in population mask use). Briefly, we

combine data on cases (correcting for trends in testing), hospitalizations and deaths

into a distribution of trends in daily deaths.

To fit this model, we resampled 1,000 draws of daily deaths from this distribution for

each state (Supplementary Information). Using an estimated IFR by age and the

$$\begin{array}{l}\frac{{dS}}{{dt}} = - \beta \left( t \right)\frac{{S\left( {I_1 + I_2}

\right)^\alpha }}{N}\\ \frac{{dE}}{{dt}} = \beta \left( t \right)\frac{{S\left( {I_1 + I_2}

\right)^\alpha }}{N} - \sigma E\\ \frac{{dI_1}}{{dt}} = \sigma E - \gamma _1I_1\\ \frac{{dI_2}}

{{dt}} = \gamma _1I_1 - \gamma _2I_2\\ \frac{{dR}}{{dt}} = \gamma _2I_2\end{array}$$
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distribution of time from infection to death (Supplementary Information), we then used

the daily deaths to generate 1,000 distributions of estimated infections by day from 10

January to 21 September 2020. We then fit the rates at which infectious individuals may

come into contact and infect susceptible individuals (denoted as β(t)) as a function of a

number of predictors that affect transmission. Our modeling approach acts across the

overall population (that is, no assumed age structure for transmission dynamics), and

each location is modeled independently of the others (that is, we do not account for

potential movement between locations).

We detail the SEIR fitting algorithm in the Supplementary Information. Briefly, for each

draw, we first fit a smooth curve to our estimates of daily new infections. Then, sampling

γ , σ and α from defined ranges from the literature (Supplementary Information) and

using \(\gamma _1 = \frac{1}{2}\), we then sequentially fit the E, I , I  and R components in

the past. We then algebraically solve the above system of differential equations for β(t).

The next stage of our model fit relationships between past changes in β(t) and covariates

described above: mobility, testing, masks, pneumonia seasonality and others. The time-

varying covariates were forecast from 28 September to 28 February 2021

(Supplementary Information). The fitted regression was then used to estimate future

transmission intensity β (t). The final future transmission intensity is then an adjusted

version of β (t) based on the average fit over the recent past (where the window of

averaging varies by draw from 2 to 4 weeks; Supplementary Information).

Finally, we used the future estimated transmission intensity to predict future

transmission (using the same parameter values for all other SEIR parameters for each

draw). In a reversal of the translation of deaths into infections, we then used the

estimated daily new infections to calculate estimated daily deaths (again using the

location-specific IFR). We also used the estimated trajectories of each SEIR

compartment to calculate R  and R .
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A final step to take predicted infections and deaths and a hospital-use microsimulation

to estimate hospital resource need for each US state is described in the Supplementary

Information and the results are presented online (https://covid19.healthdata.org/).

Forecasts/scenarios

Policy responses to COVID-19 can be supported by the evaluation of the impacts of

various scenarios of those options, against a background of a business-as-usual

assumption, to explore fully the potential impact of policy levers available. Additional

details are available in the Supplementary Information.

We estimate the trajectory of the epidemic by state under a mandate-easing scenario

that models what would happen in each state if the current pattern of easing SDMs

continues and new mandates are not implemented. This should be thought of as a worst-

case scenario where, regardless of how high the daily death rate becomes, SDMs will not

be reintroduced and behavior (including population mobility and mask use) will not

vary before 28 February 2021. In locations where the number of cases is rising, this leads

to very high numbers of cases by the end of the year.

As a more plausible scenario, we use the observed experience from the first phase of the

pandemic to predict the likely response of state and local governments during the

second phase. This plausible reference scenario assumes that in each location the trend

of easing SDMs will continue at its current trajectory until the daily death rate reaches a

threshold of 8 deaths per million. If the daily death rate in a location exceeds that

threshold, we assume that SDMs will be reintroduced for a 6-week period. The choice of

threshold (of a daily rate of 8 deaths per million) represents the 90th percentile of the

distribution of daily death rate at which US states implemented their mandates during

the first months of the COVID-19 pandemic. We selected the 90th percentile rather than

the 50th percentile to capture an anticipated increased reluctance from governments to

reinstate mandates because of the economic effects of the first set of mandates. In

locations that do not exceed the threshold of a daily death rate of 8 per million, the

projection is based on the covariates in the model and the forecasts for these to 28
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February 2021. In locations where the daily death rate exceeded 8 per million at the time

of running our final model (21 September 2020), we assumed that mandates would be

introduced within 7 days.

The scenario of universal mask use models what would happen if 95% of the population

in each state always wore a mask when they were in public. This value was chosen to

represent the highest observed rate of mask use in the world so far during the COVID-19

pandemic (Supplementary Information). In this scenario, we also assumed that if the

daily death rate in a state exceeds 8 deaths per million, SDMs will be reintroduced for a

6-week period.

Two additional, derivative scenarios were included to assist understanding and policy

resolution of these main framework scenarios: a less comprehensive mask-wearing

scenario of 85% public use of masks and a scenario of universal mask use in the absence

of any additional NPIs. The less comprehensive mask-wearing scenario evaluated what

would happen if 85% of the population in each state always wore a mask when they were

in public. As with the universal mask-use scenario, we also assumed that if the daily

death rate in a state exceeds 8 deaths per million, SDMs will be reintroduced for a 6-week

period. For completeness, we also evaluated universal mask use by 95% of the

population in a scenario that assumes no implementation of other NPIs at any threshold

value of daily deaths—the results from this scenario, which did not differ notably from

the more probable version where states respond to rising numbers of daily COVID-19

deaths by reinstating SDM, are provided in the Supplementary Information and Figs. 2–

4. SEIR model vetting plots for scenarios of 95% mask use with mandates

(Supplementary Data 1), 95% mask use without mandates (Supplementary Data 2) and

85% mask use with mandates (Supplementary Data 3), as well as detailed regression

diagnostics (Supplementary Data 4) and the spatial distribution of select covariates

(Supplementary Data 5) are available in the Supporting Information. All scenarios

assume an increase in mobility associated with the opening of schools across the

country.
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Model validation

OOS predictive performance for IHME SEIR models has been assessed against

subsequently observed trends in an ongoing fashion and compared to other publicly

available COVID-19 mortality forecasting models in a publicly available framework .

The IHME SEIR model described here has consistently demonstrated high accuracy, as

measured by a low MAPE, when compared to models from other groups. For example,

among models released in June, at 10 weeks of extrapolation, the IHME SEIR model had

the lowest MAPE of any observed forecasting group at 20.2%, compared to an average of

32.6% across groups. Numerous other aspects of predictive performance are assessed in

our publicly available framework .

The increasing number of population-based serology surveys conducted also provides a

unique opportunity to cross-validate our forecasts with modeled epidemiological

outcomes. In Extended Data Fig. 9, we compare these serology surveys (such as the

Spanish ENE-COVID study ) to our estimated population seropositivity, time indexed to

the date that the survey was conducted. In general, across the varied locations that have

been reported globally, we note a high degree of agreement between the estimated and

surveyed seropositivity. As more serology studies are conducted and published,

especially in the United States, this will allow an ongoing and iterative assessment of

model validity. Two sensitivity analyses were conducted; the first assessed the

importance of specific model assumptions on OOS predictive validity, while the second

assessed the robustness of our conclusions to these same model assumptions

(Supplementary Information).

Limitations

Epidemics progress based on complex nonlinear and dynamic biological and social

processes that are difficult to observe directly and at scale. Mechanistic models of

epidemics, formulated either as ordinary differential equations or as individual-based

simulation models, are a useful tool for conceptualizing, analyzing or forecasting the

time course of epidemics. In the COVID-19 epidemic, effective policies and the responses
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to those policies have changed the conditions supporting transmission from one week

to the next, with the effects of policies realized typically after a variable time lag. Each

model approximates an epidemic, and whether used to understand, forecast or advise,

there are limitations on the quality and availability of the data used to inform it and the

simplifications chosen in model specification. It is unreasonable to expect any model to

do everything well, so each model makes compromises to serve a purpose, while

maintaining computational tractability.

One of the largest determinants of the quality of a model is the corresponding quality of

the input data. Our model is anchored to daily COVID-19-related deaths, as opposed to

daily COVID-19 case counts, due to the assumption that death counts are a less biased

estimate of true COVID-19-related deaths than COVID-19 case counts are of the true

number of SARS-CoV-2 infections. Numerous biases such as treatment-seeking

behavior, testing protocols (such as only testing those who have traveled abroad) and

differential access to care greatly influence the utility of case count data. Moreover,

there is growing evidence that inapparent and asymptomatic individuals are infectious,

as well as individuals who eventually become symptomatic and are infectious before the

onset of any symptoms. As such, our primary input data for our model are counts of

deaths; death data can likewise be fallible, however, and where available, we combine

death data, case data and hospitalization data to estimate COVID-19 deaths.

Beyond the basic input data, a large number of other data sources with their own

potential biases are incorporated into our model. Testing, mobility and mask use are all

imperfectly measured and may or may not be representative of the practices of those

that are susceptible and/or infectious. Moreover, any forecast of the patterns of these

covariates is associated with a large number of assumptions (Supplementary

Information), and as such, care must be taken in the interpretation of estimates farther

into the future, as the uncertainty associated with the numerous submodels that go into

these estimates increases in time. Moreover, although our time-invariant covariates are

simpler to estimate, some of them may be more associated with disease outcome than

transmission potential, and thus their impact on the model may be more muted.
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For practical purposes, our transmission model has made a large number of simplifying

assumptions. Key among these is the exclusion of movement between locations (for

example, importation) and the absence of age structure and mixing within location (for

example, we assume a well-mixed population). It is clear that there are large, super-

spreader-like events that have occurred throughout the COVID-19 pandemic, and our

current model is unable to fully capture these dynamics. Another important assumption

to note is that of the relationship between pneumonia seasonality and SARS-CoV-2

seasonality. To date, across both the Northern and Southern Hemispheres, there is a

strong association between COVID-19 cases and deaths and general seasonal patterns of

pneumonia deaths (Supplementary Information). Our forecasts to the end of February

2021 are immensely influenced by the assumption that this relationship will maintain

throughout the year and that SARS-CoV-2 seasonality will be well approximated by

pneumonia seasonality. While we assess this assumption to the extent possible

(Supplementary Information), we have not yet experienced a full year of SARS-CoV-2

transmission, and as such cannot yet know if this assumption is valid. Additionally, our

model attempts to account for some of the associated uncertainties in the process but

does not fully capture all levels of uncertainty. Future iterations should track

uncertainties that arise from more complex processes such as demographic

stochasticity. There is also uncertainty (and unidentifiability) surrounding a number of

the parameters of the transmission model. Here we have chosen to incorporate this lack

of knowledge by drawing key transmission parameters from plausible distributions and

then presenting the average result across these potential realities. As more information

becomes available, we hope to tune these parameters to each location in turn.

Finally, the model presented herein is not the first model our team has developed to

predict current and future transmission of SARS-CoV-2. As the outbreak has progressed,

we have attempted to adapt our modeling framework to both the changing

epidemiological landscape, as well as the increase in data that could be useful to inform

a model. Changes in the dynamics of the outbreak overwhelmed both the initial purpose

and some key assumptions of our first model, requiring evolution in our approach.

While the current SEIR formulation is a more flexible framework (and thus less likely to
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need complete reconfiguration as the outbreak progresses further), we fully expect the

need to adapt our model to accommodate future shifts in patterns of SARS-CoV-2

transmission. Incorporating movement within and without locations is one example,

but resolving our model at finer spatial scales, as well as accounting for differential

exposure and treatment rates across sexes and races are other dimensions of

transmission modeling that we currently do not account for but expect will be necessary

additions in the coming months. As we have done before, we will continually adapt,

update and improve our model based on need and predictive validity.

Reporting Summary

Further information on research design is available in the Nature Research Reporting

Summary linked to this article.

Data availability

Results specific to the model run for this publication are accessible for each state

(http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-2020-

2021). The estimates viewable in our online tool (https://covid19.healthdata.org/) will be

iteratively updated as new data are incorporated and will ultimately supersede the

results in this paper. The findings of this study are supported by data available in public

online repositories and data that are available upon request from the data provider; non-

publicly available data were used under license for the current study but can be made

available with permission of the data provider; contact information is provided where

applicable. Data citations for COVID-19 metrics (cases, hospitalizations and deaths)

include the COVID-19 Repository by the Center for Systems Science and Engineering at

Johns Hopkins University (cases and deaths;

https://github.com/CSSEGISandData/COVID-19) and the COVID Tracking Project

(hospitalizations; https://covidtracking.com/data/api). State-level datasets were

replaced in the following locations, using the following sources: Alaska hospitalizations

from https://coronavirus-response-alaska-dhss.hub.arcgis.com/; Delaware cases and
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deaths from https://www.dhss.delaware.gov/dhss/dph/index.html; Hawaii cases and

deaths from https://health.hawaii.gov/coronavirusdisease2019/what-you-should-

know/current-situation-in-hawaii/; Illinois cases and deaths from

https://dph.illinois.gov/covid19/covid19-statistics; Indiana cases and deaths from

https://www.coronavirus.in.gov/2393.htm; Kentucky cases and deaths from

https://govstatus.egov.com/kycovid19; Maryland cases and deaths from

https://coronavirus.maryland.gov/; Nebraska cases and deaths from

http://dhhs.ne.gov/Pages/Coronavirus.aspx; New York cases and deaths from

https://github.com/nychealth/coronavirus-data and

https://covid19tracker.health.ny.gov/views/NYS-COVID19-Tracker/NYSDOHCOVID-

19Tracker-Map?%3Aembed=yes&%3Atoolbar=no&%3Atabs=n; North Carolina cases and

deaths from https://covid19.ncdhhs.gov/dashboard; and Washington cases,

hospitalizations and deaths from

https://www.doh.wa.gov/Emergencies/COVID19/DataDashboard. The timing of

mandate implementation for each state was derived from a preprint study  and

supplemented with ad hoc additional resources available at

http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-2020-

2021. The mobility covariate was constructed using data from Google Community

Mobility Reports (https://www.google.com/covid19/mobility/); Facebook Data for Good

Disease Prevention Maps (https://dataforgood.fb.com/tools/disease-prevention-maps/;

with access coordinated via diseaseprevmaps@fb.com); SafeGraph Shelter in Place

Index (https://www.safegraph.com/dashboard/covid19-shelter-in-place?s=US&d=09-13-

2020&t=counties&m=index; with access coordinated through the SafeGraph COVID-19

Data Consortium via https://www.safegraph.com/covid-19-data-consortium/); and

Descartes Labs (https://github.com/descarteslabs/DL-COVID-19). The testing covariate

was constructed using data from the COVID Tracking Project

(https://covidtracking.com/data/api/). State-level datasets for the testing covariate were

replaced in Washington, using

https://www.doh.wa.gov/Emergencies/COVID19/DataDashboard. Mask-use data were

obtained from Premise COVID-19 Global Impact Survey (https://www.premise.com/the-
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dos-and-donts-of-conducting-surveys-during-covid-19/; with access coordinated

through info@premise.com); the Facebook (COVID) Symptom Survey (with access

coordinated through University of Maryland Joint Program in Survey Methodology via

admin-C19survey-fb@umd.edu); and the YouGov COVID-19 Behavioural Tracker Survey

(https://github.com/YouGov-Data/covid-19-tracker). Pneumonia seasonality estimates,

particulate matter air pollution estimates, lower respiratory infection country-specific

mortality rate estimates and smoking estimates were generated by the Global Burden of

Disease study (http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-

scenarios-2020-2021/ ). Altitude was sourced from the National Oceanic and

Atmospheric Administration National Centers for Environmental Information Global

Land One-km Base Elevation Project

(https://www.ngdc.noaa.gov/mgg/topo/globe.html) and population data were obtained

from WorldPop Population Counts (https://www.worldpop.org/project/list/). These

sources are further detailed in the Supplementary Information .

Source data are provided with this paper.

Code availability

All code used for these analyses was custom created for this study and is publicly

available online (https://github.com/ihmeuw/covid-model-seiir-pipeline/ and

https://github.com/ihmeuw/covid-model-deaths-spline/).

Analyses were carried out using R version 3.6.1, Python 3.8 and R-INLA version

20.01.29.9000. All maps presented in this study are generated by the authors using

RStudio (R Version 3.6.3) and ArcGIS Desktop 10.6, and no permissions were required to

publish them. Administrative boundaries were retrieved from the Database of Global

Administrative Areas. Land cover was retrieved from the online Data Pool, courtesy of

the NASA Earth Observing System Data and Information System Land Processes

Distributed Active Archive Center, United States Geological Survey Earth Resources

Observation and Science Center.
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Extended data

Extended Data Fig. 1 Estimated daily COVID-19 death rate (per 100,000
population) by state for all five scenarios.
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The inset map displays the estimated daily deaths from COVID-19 death per 100,000

population by state on 28 February 2021. The light yellow background separates the

observed and predicted part of the time series, before and after 21 September 2020. The

dashed vertical line identifies 03 November 2020. Numbers are the means and

uncertainty interval (UI) for the plausible reference scenario on dates highlighted.

Source data

Extended Data Fig. 2 Estimated total hospital beds needed for COVID-19
patients by state from 01 February 2020 to 28 February, 2021, under the
plausible reference scenario.
The inset map displays the estimated peak number of all COVID-19 beds above capacity

by state between 22 September 2020 and 28 February 2021. The light yellow background

separates the observed and predicted part of the time series, before and after 21

September 2020. The dashed vertical line identifies 03 November 2020. Numbers are

the means and uncertainty interval (UI) for the plausible reference scenario on dates

highlighted.

Source data

Extended Data Fig. 3 Estimated total ICU beds needed for COVID-19 patients
by state from 01 February 2020 to 28 February 2021, under the plausible
reference scenario.
The inset map displays the estimated peak number of all ICU COVID-19 beds above

capacity by state between 22 September 2020 and 28 February 2021. The light yellow

background separates the observed and predicted part of the time series, before and

after 21 September 2020. The dashed vertical line identifies 03 November 2020.

Numbers are the means and uncertainty interval (UI) for the plausible reference

scenario on dates highlighted.

Source data

Extended Data Fig. 4 Estimated cumulative deaths from COVID-19 per
100,000 population from 01 February 2020 to 28 February 2021, by state,
for all five scenarios.
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The inset map displays the estimated cumulative deaths per 100,000 population under

the plausible reference scenario on 28 February 2021. The light yellow background

separates the observed and predicted part of the time series, before and after 21

September 2020. The dashed vertical line identifies 03 November 2020. Numbers are

the means and uncertainty interval (UI) for the plausible reference scenario on dates

highlighted. The UIs are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 5 Estimated cumulative infections from SARS-CoV-2 from
01 February 2020 to 28 February 2021, by state, for all five scenarios.
The inset map displays the estimated cumulative infections under the plausible

reference scenario on 28 February 2021. The light yellow background separates the

observed and predicted part of the time series, before and after 21 September 2020. The

dashed vertical line identifies 03 November 2020. Numbers are the means and

uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The

UIs are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 6 Estimated cumulative SARS-CoV-2 infection rate (per
100,000 population) by state, for all five scenarios.
The inset map displays the estimated cumulative infections from COVID-19 per 100,000

population by state on 28 February 2021. The light yellow background separates the

observed and predicted part of the time series, before and after 21 September 2020. The

dashed vertical line identifies 03 November 2020. Numbers are the means and

uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The

UIs are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 7 Estimated daily infections from SARS-CoV-2 from 01
February 2020 to 28 February 2021 by state, for all five scenarios.
The inset map displays the estimated daily infections under the plausible reference

scenario on 28 February 2021. The light yellow background separates the observed and
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Supplementary information

predicted part of the time series, before and after 21 September 2020. The dashed

vertical line identifies 03 November 2020. Numbers are the means and uncertainty

interval (UI) for the plausible reference scenario on dates highlighted. The UIs are shown

only for the plausible reference scenario.

Source data

Extended Data Fig. 8 Estimated daily SARS-CoV-2 infection rate (per 100,000
population) by state, for all five scenarios.
The inset map displays the estimated daily infections from COVID-19 per 100,000

population by state on 28 February 2021. The light yellow background separates the

observed and predicted part of the time series, before and after 21 September 2020. The

dashed vertical line identifies 03 November 2020. Numbers are the means and

uncertainty interval (UI) for the plausible reference scenario on dates highlighted. The

UIs are shown only for the plausible reference scenario.

Source data

Extended Data Fig. 9 Modeled SARS-CoV-2 infection prediction totals
compared with survey-derived seroprevalence rates in select locations.
Modeled SARS-CoV-2 infection prediction totals compared with survey-derived

seroprevalence rates in select locations globally. The scatter plots show locations colour

coded by country; horizontal bars are the 95% confidence interval in the modeled

estimates. The inset violin plot of the measured seropositivity data show the

predominantly low values seropositivity estimates (below 5%) recorded in this global

sample.

Source data

Supplementary Information
Supplementary Text on data and methods, Supplementary Model descriptions,

Supplementary Figs. 1–12 and Supplementary Tables 1–12.
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Source data

Reporting Summary

Supplementary Data 1
Appendix 1: SEIR model vetting plots for the scenario of 95% mask use with mandates.

Supplementary Data 2
Appendix 2: SEIR model vetting plots for the scenario of 95% mask use without

mandates.

Supplementary Data 3
Appendix 3: SEIR model vetting plots for the scenario of 85% mask use with mandates.

Supplementary Data 4
Appendix 4: detailed SEIR regression diagnostics.

Supplementary Data 5
Appendix 5: spatial distribution of selected covariates.

Source Data Fig. 1
Statistical source data.

Source Data Fig. 2
Statistical source data.

Source Data Fig. 3
Statistical source data.

Source Data Fig. 4
Statistical source data.

Source Data Extended Data Fig. 1
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Source Data Extended Data Fig. 2
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